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АНОТАЦІЯ 

Лабібов Р. Р. Особливості пластичного деформування одно- та 

двовимірних конструкційних елементів із майданчиком плинності. – 

Кваліфікаційна наукова праця на правах рукопису. 

Дисертація на здобуття наукового ступеня кандидата технічних наук за 

спеціальністю 05.23.17 «Будівельна механіка» (05 – Технічні науки). – 

Дніпровський національний університет імені Олеся Гончара, Український 

державний університет науки і технологій, ННІ «Придніпровська державна 

академія будівництва та архітектури» Міністерства освіти і науки України, 

Дніпро, 2025. 

Дисертація присвячена теоретичному узагальненню і побудові нового 

роз’яснення науково-прикладної задачі щодо побудови аналітичних методів і 

чисельних моделей, що дозволяють описувати поведінку матеріалів з 

майданчиком плинності, досліджувати процеси втрати стійкості, будувати 

моделі вичерпання несучої здатності і втрати стійкості при знакозмінному 

навантаженні та у стані пластичності. 

Механіка матеріалів з майданчиком плинності, для яких притаманне 

явище локалізації пластичної деформації, є галуззю, що розвивається з 1960-х 

рр. Теоретичні та експериментальні дослідження цього класу матеріалів 

дозволять розширити сфери їх застосування. Актуальність таких досліджень 

зумовлена вимогами до сучасних технічних рішень, зокрема щодо підвищеної 

стійкості до знакозмінних і вібраційних навантажень, більшої здатності до 

пластичної деформації без руйнування, ніж у матеріалів, що зазвичай 

використовуються для забезпечення міцності та цілісності конструкцій. Саме 

наявність двох стійких форм рівноваги та візуально помітного настання 

пластичної течії дозволила широко використовувати ці матеріали в таких 

галузях, як супутникобудування, медичні технології, конструювання датчиків. 

До таких матеріалів відносяться матеріали з пам’яттю форми, наприклад, 

нітінол (нікелід титану NiTi) та сплави на нікелю і марганцю (FeNiCoAl, 
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CuAlMn, FeMnAlNi). 

У будівельній галузі клас матеріалів з майданчиком плинності 

використовується, починаючи з 1990-х рр. Ці матеріали, незважаючи навіть на 

їхню низьку, порівняно зі сталями, несучу здатність, мають такі переваги, як 

стійкість до періодичних, знакозмінних навантажень, вібрацій, легкість, 

корозійну стійкість, набагато більшу межу руйнування в стані пластичності. Ці 

характеристики роблять їх придатними для застосувань, пов’язаних із 

реконструкцією та мінімізацією ризиків. 

На практиці матеріали з майданчиком плинності знайшли застосування, 

зокрема в будівельній галузі, машинобудуванні, металургії та в області 

досліджень матеріалів. Як приклад, можливе покращення сейсмічних 

показників будівель шляхом додавання елементів із матеріалів досліджуваного 

класу до основної надміцної конструкції із звичайних матеріалів, яка має 

витримувати перші основні поштовхи. Додавання елементів з описаних 

матеріалів може суттєво підвищити ресурс стійкості будівель до повторних 

поштовхів (афтершоків), які хоча і мають меншу амплітуду та енергію, можуть 

характеризуватися більшою частотою і продовжувати знижувати несучу 

здатність основної конструкції. 

Таким чином, саме описані відмінності матеріалів з майданчиком 

плинності від традиційних конструкційних матеріалів відкривають можливості 

їх застосування в нетипових випадках. Це зумовлює необхідність проведення 

більш детальних досліджень в межах будівельної механіки для глибшого 

розуміння механічних процесів, теоретичного осмислення та моделювання, 

заснованого на точних математичних моделях. 
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Важливим аспектом проектування елементів конструкцій та деталей 

машин є ідентифікація найбільш ймовірної моди руйнування та розробка 

відповідного критерію руйнування, яке зазвичай пов'язують з формуванням 

нових вільних поверхонь в матеріалі. На геометричному рівні руйнування може 

бути представлено, як поділ елемента конструкції на дві або більше частин 

внаслідок поширення тріщин. Руйнуванню передує утворення мікротріщин, їх 

зростання, злиття та утворення магістральних тріщин в матеріалі. 

Таким чином, при вивченні руйнування твердих тіл слід розглядати 

різноманітні мікроскопічні явища, які відбуваються в різних масштабах 

розмірів, так і макроскопічні ефекти, спричинені конкретним навантаженням, 

умовами навколишнього середовища та геометрією тіл. Цілком природно, що 

теорії, які вивчають руйнування твердих тіл, зазвичай розглядають цю 

проблему на одному з трьох рівнів розмірів: мікроскопічному (атомному), 

мікроструктурному та макроскопічному (континуальному).  

Експериментально встановлено, що при розтягуванні плоского зразка з 

м'якої сталі на його полірованій поверхні утворюються тонкі, неясно видимі 

лінії, що проходять під деяким кутом до напрямку розтягування. Ці лінії, відомі 

інженерам під назвою смуг Людерса, з'являються в момент падіння напружень 

на межі плинності і поширюються уздовж зразка. Спостереження за появою і 

поширенням цих ліній на поверхні металевих зразків дають цінну інформацію 

про характер явищ, що відбуваються в структурі матеріалу на початку 

пластичної деформації.  

Опису цих явищ в сучасній літературі присвячено багато робіт. У них 

зазвичай розглядаються модельні задачі для деяких моделей поведінки 

матеріалу та чисельні моделі, що спрямовані на дослідження поведінки 

стандартних конструкційних елементів, таких як балки та тонкостінні труби. 

Для завершеності аналізу необхідно доопрацювання моделей, зокрема процесу 

розвитку пластичної деформації в точці для матеріалів, які мають майданчик 

плинності.  

Отже, дослідження неоднорідної пластичної деформації на майданчику 
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плинності є актуальним і перспективним, що й обумовило вибір теми даної 

дисертаційної роботи. Описане трактування задачі дозволяє отримати 

реалістичні картини розвитку пластичної деформації в одно- та двовимірному 

випадку.  

Дисертаційну роботу було виконано у межах індивідуального плану 

роботи аспіранта та в рамках держбюджетної теми № 1-301-15 «Розробка 

методик розв’язку фундаментальних задач міцності та руйнування кусково-

однорідних тіл, скомпонованих з інтелектуальних матеріалів» 

(№ ДР 015U002393).  

Метою роботи є розроблення розрахункового апарату та встановлення 

закономірностей явища локалізації пластичної деформації одно- та 

двовимірних конструкційних елементів, виготовлених з матеріалів з 

майданчиком плинності, а також теоретичне обґрунтування виникнення та 

розвитку ліній Людерса.  

Задачі, які були вирішені для досягнення поставленої мети: 

- проведено аналіз і класифікацію наявних підходів до моделювання 

пластичної течії на майданчику плинності; 

- побудовано розв’язок задачі про розповсюдження фронту 

пластичної деформації; 

- в результаті розв’язку задач Йоффе встановлено зв'язок швидкості 

руху лінії розриву деформації від її довжини; 

- побудовано варіант теорії течії з комбінованим зміцненням, який 

дозволяє описувати матеріали з майданчиком плинності; 

- з використанням метода скінченних елементів побудовано алгоритм 

розв’язку одно- та двовимірних задач розповсюдження фронту пластичної 

деформації. 

Наукова новизна отриманих результатів полягає у такому: 

Вперше: 

1) побудовано математичну модель одновимірної пластичної 

деформації для матеріалу з майданчиком плинності, що має такі особливості: 
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врахування параметру часу та розбіжності між станом напружено-

деформованого стану у точці та у зразку в цілому;  

2) задачу руху лінії розриву деформації вздовж фронту хвилі 

пластичної деформації зведено до задачі Йоффе, що є подальшим розвитком 

розв’язків задач динаміки за допомогою функції Йоффе. Функцію Йоффе, що 

зазвичай використовується у математичних моделях розвитку тріщин у деяких 

окремих типах матеріалів, було використано для розв’язку задач теорії 

пластичності після обґрунтування подібності деяких процесів у тріщинах 

моделі Йоффе та у фронті пластичної локалізації; 

3) отримано розв’язок задачі Йоффе у формі співвідношення між 

швидкістю руху розриву уздовж фронту хвилі та відношенням розміру зерна до 

розміру лінії розриву, що дозволило визначити швидкість руху розриву для 

матеріалу; 

4) в результаті розв’язку задач Йоффе встановлено залежність 

швидкості руху лінії розриву деформації від її довжини, що дозволило здобути 

уточнення формули для швидкості фронту; 

5) побудовано чисельний розв'язок задач про розвиток фронту 

пластичної деформації в трубі при внутрішньому тиску та полоси при чистому 

згині. 

Удосконалено: 

6) удосконалено модель пластичного деформування при знакозмінних 

та циклічних навантаженнях розвинуто за допомогою нової теорії течії з 

комбінованим зміцненням, яка дозволяє описувати майданчик плинності та 

його особливості при знакозмінному навантаженні. 

Дістали подальший розвиток: 

7) дістали подальший розвиток моделі пластичної деформації у станах 

перед втратою стійкості та руйнуванням, куди було додано параметр часу, що 

дозволяє описати динамічні процеси. За допомогою такої моделі розглянуто 

задачу розповсюдження фронту хвилі пластичної деформації та встановлено 

швидкість розповсюдження фронту. 



7 

Практичне значення отриманих результатів складається в розробці 

рішень для вивчення явища розповсюдження фронту пластичної деформації 

для матеріалів з майданчиком плинності. Результати роботи можуть бути 

використані для опису поведінки ряду матеріалів в будівельній галузі, 

машинобудуванні, металургії та ін. 

Результати роботи використовуються в навчальному процесі 

Дніпровського національного університету імені Олеся Гончара при викладанні 

навчальних дисциплін «Опір матеріалів», «Моделі і методи інженерії міцності», 

«Механіка матеріалів в інженерних задачах», «Моделі і методи теорії 

пластичності». 

У вступі окреслено актуальність теми, мету, наукову новизну одержаних 

результатів. 

У першому розділі роботи міститься огляд попередніх відомих 

досліджень механіки пластичності та плинності. Задачі механіки пластичності 

та теорії плинності розглядалися у роботах Г. І. Баренблатта, 

С. О. Христиановича, В. М. Кукуджанова, Ю. А. Чернякова, П. О. Стеблянка, 

B. A. Bilby, A. H. Cottrell, Z. P. Bažant, W. Lüders, A. Nadai, W. G. Johnston, 

G. Hahn, E. O. Hall, J. Shaw, E. C. Aifantis, S. Kyriakides, F. Yoshida, 

A. Needleman, J. Zhang, Y. Jiang, L. Sluys, N. Dowling, K. Broberg, E. H. Yoffe. 

Наведений в роботі огляд досліджень свідчить про те, що поведінку 

матеріалу на майданчику плинності вивчено досить докладно в рамках моделі 

теорії пластичності. Також існує достатня кількість експериментальних даних, 

що дозволяє розглядати у деталях процес переходу пружного стану у 

пластичний. Але поясненню фізичних властивостей матеріалів та явищ, що 

відбуваються за значень напружень між межею пружності та початком 

зміцнення, було приділено недостатньо уваги. Такі характеристики переходу у 

пластичний стан як наявність повільної пластичної хвилі сталої швидкості та її 

зв’язок з утворенням смуг Людерса розглядаються лише як зв’язані фізичні 

особливості. З огляду на це, випливає важливість вивчення процесу переходу у 

пластичний стан для матеріалів з майданчиком плинності, а також розроблення 

ефективної методики розв’язання задач теорії пластичності.  

У другому розділі розглянуто задачу пластичної деформації стрижня, 
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діаграма напружень-деформацій якого відрізняється від діаграми для  

матеріалу (рис. 2.1, с. 42), тобто поведінка при м’якому та жорсткому 

навантаженні демонструє різні шляхи переходу у стан зміцнення після 

подолання межі пластичності.  

У третьому розділі досліджено питання розвитку смуги розриву 

деформації, що дозволяє визначити швидкість розповсюдження фронту 

пластичної деформації. На підставі цього приходимо до задачі Йоффе, 

розв’язок якої дав можливість встановити зв'язок швидкості руху лінії розриву 

змішень від її довжини, що дозволило здобути уточнення формули для 

швидкості фронту. 

У четвертому розділі наводиться розв'язок задач про розвиток фронту 

пластичної деформації трубі при внутрішньому тиску та полоси при чистому 

згині. 
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SUMMARY 

Labibov R. R. Characteristics of plastic deformation of one- and two-

dimensional structural elements with yielding plateau. – Qualification scientific 

work on manuscript rights. 

Thesis for the degree of Candidate of Technical Sciences (Doctor of 

Philosophy) in specialty 05.23.17 “Structural mechanics” (05 – Technical sciences). – 

Oles Honchar Dnipro National University, Ukrainian State University of Science and 

Technologies, ESI “Prydniprovska State Academy of Civil Engineering and 

Architecture” of the Ministry of Education and Science of Ukraine, Dnipro, 2025. 

This dissertation contains theoretical generalization and proposes a new 

explanation of scientific and applies problems of construction of analytical and 

numerical models that describe behavior of materials with yielding plateau, research 

processes of loss of stability, create models of loss of structural ability and stability 

during alternating load in state of plasticity. 

Mechanics of materials with extensive yielding plateau in plasticity phase is an 

area of research that has been developed since the 1960s. Theoretical and 

experimental research of this class of materials enables extension if its scope of 

application. Relevancy of such exploration is validated by requirements for modern 

applied solutions, such as demands for increased stability in cases of vibrations and 

alternating loads, or ability to withstand more plastic deformation without structural 

collapse than ordinary construction materials. Particular features like existence of two 

stable crystal lattice forms and visual cues for progression of plastic state enabled 

usage of such materials in application to satellite technology, medicine, sensors, etc. 

Examples of such materials are some soft steels, nitinol (nickel titanium, NiTi) alloys 

based on nickel and manganese (FeNiCoAl, CuAlMn, FeMnAlNi). 

This class of materials started to find applications in structural engineering and 

construction since the 1990s. While those compounds are significantly less suitable 

for their usage as primary materials, there are particular properties such as increased 

softening limits, anti-corrosion abilities, lighter density, stability under vibrations and 
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mush larger ultimate plastic stress. As a result it is possible to use them in 

reconstruction and construction risk assessment. 

The following cases are real applications of materials with extensive yielding 

plateau: 

- reconstruction of bridges that already accumulated aging defects because 

of considerable excess usage and incompatibility of the original projected loads to the 

actual usage scenarios. In such cases existing frame made of steel is enhanced by a 

wireframe made of the considered materials. Such applications are made possible by 

increased vibrational and alternating load stability; 

- enhancement of seismic properties of buildings and structures by 

embedding yielding materials to existing hardened base. While main hardened 

structure is designed to withstand primary earthquakes, yielded wireframe allows to 

overcome aftershocks – waves of lesser energy and amplitude, but still continuing 

making damage. 

The described peculiarities open possibilities for untypical use of materials 

with extensive yielding plateau. Such applications require more detailed research of 

usage in construction for deeper understanding of material processes, theoretical 

analysis and simulations based on precise mathematical models. 

An important question of modelling construction elements and machine 

components is an identification of the most likely mode of failure and an introduction 

of the appropriate failure criterion, which is usually associated with the formation of 

new free surfaces in a material. From a macroscopic point of view, structural failure 

can be represented as a separation of a structural element into two or more parts as a 

result of the crack propagation. This is preceded by the formation of microcracks, its 

growth, merges and the formation of trunk cracks in a material. Thus, in the study of 

solid failure it is necessary to consider various factors as microscopic phenomena that 

occur at different scales, and macroscopic effects on loading, environmental 

conditions, and geometry of the medium. It is entirely natural that theories that study 

the destruction of solids relate to this problem, as a rule, only in one of three levels of 

size, on microscopic (atomic), microstructural, and macroscopic (continuum) 
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respectively. 

It has been experimentally established that when applying tension to a flat strip 

made of soft steel on its polished surface there are unobtrusively visible lines forming 

at a certain angle to the stretching direction. These lines, known to engineers under 

the name Lüders bands, appear at the moment of falling loads at the yielding limit 

and extend along the length of the specimen. Observation over the appearance and 

distribution of these lines on the surface of steel samples gives valuable information 

about the nature of phenomena occurring in the structure of the material at the time 

plastic deformation starts. 

This considerations show that research of plastic deformation and yielding has 

perspectives and this fact concluded in the selection of this dissertation research 

topic. Such an interpretation of the problem gives an opportunity to get realistic 

pictures of the development of plastic deformation in one-dimensional and two-

dimensional cases. 

Topic of this dissertation is devoted to the development of computational and 

theoretical framework to describe phenomenon of yielding, localization of plastic 

deformation in uni- and two-dimensional models of construction elements made of 

materials with yielding plateau, as well as theoretical description of origin Lüders 

bands. 

The following problems were solved to meet the research goals: 

- analysis and classification of existing approaches for modelling of plastic 

flow during yielding; 

- solution of the problem of expansion of bands of plastic deformation was 

obtained; 

- as a result of obtaining solution to the Yoffe problem a relation between 

velocity of displacement discontinuity band and its length was obtained; 

- a variant of plastic flow theory with combined hardening that allows 

modelling of materials with yielding plateau is described; 

- using the finite element method and algorithm of solving problems of 

uni- and two-dimensional propagation of plastic bands is obtained. 
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Scientific novelties of the obtained results are: 

For the first time: 

1) development of a mathematical model of uniaxial plastic deformation for 

a material with yielding plateau. The model includes the parameter of time and 

discrepancies between stress-strain state in a point and in specimen as a whole; 

2) consideration of a problem of displacement discontinuity band along the 

wave of plastic localization as a case of Yoffe problem, that is a further development 

of application of the Yoffe solution for dynamical cases. Yoffe function that is 

usually applied in problems of development of cracks in certain materials is used for 

solving the problem of plastic deformation after showing similarities between certain 

processes inside Yoffe model cracks and plasticity localization bands; 

3) obtained a solution of the Yoffe problem as a relation between the 

velocity of propagation of displacement discontinuity band along the plastic band, ye 

size of grain of crystalline microstructure and the size of the slip band. This leads to 

obtaining of velocity of slip band for a material; 

4) obtained dependency of slip line velocity and its length as a result of 

solution of the Yoffe problem that provided a way to estimate plastic band velocity; 

5) developed a numerical solution of problems of propagation of plasticity 

localization bands in a pipe under internal pressure and a strip under pure bending. 

Enhanced: 

6) enhanced an existing model of plastic deformation under alternating and 

cyclical loads with the help of new plastic flow theory with combined hardening that 

allows the description of yielding plateau and its peculiarities under altering load. 

Acquired further development: 

7) improved models of plastic deformation in a state before structural 

collapse as time parameter introduces an ability to describe continuous processes. As 

part of this problem propagation of plasticity band is considered and velocity of such 

propagation is obtained. 

Practical values of the obtained results are solutions of problems of 

development and propagation of plasticity localization bands for materials with 
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yielding plateau. The solutions may be used for describing the behavior of a number 

of materials for applications in construction, machinery, metallurgy, etc. 

The introduction to the dissertation describes relevance of the topic to the 

general theory of plasticity and scientific novelty of the obtained results. 

Chapter 1 contains a review of existing known researches of mechanics of 

plasticity and yielding. Problems of mechanics of plasticity and yielding were 

previously considered in the works of G. I. Barenblatt, S. A. Khristianovich, 

V. M. Kukudzhanov, Yu. A. Chernyakov, P. O. Steblyanko, A. G. Zelensky, 

V. P. Poshyvalov, B. A. Bilby, A. H. Cottrell, Z. P. Bažant, W. Lüders, A. Nadai, 

W. G. Johnston, G. Hahn, E. O. Hall, J. Shaw, E. C. Aifantis, S. Kyriakides, 

F. Yoshida, A. Needleman, J. Zhang, Y. Jiang, L. Sluys, N. Dowling, K. Broberg, 

E. H. Yoffe. 

The overview of the published theories shows that behavior of material on 

yielding plateau was extensively researched as part of research of models of 

plasticity. There exists a number of experimental works that show the process of 

transitioning from elastic state into state of plasticity. At the same time physical 

nature of processes between elasticity limit and start of hardening is not described in 

detail. Certain characteristics of transitioning into plastic state like existence of slow 

plasticity wave with constant velocity and its connection with the occurrence of 

Lüders bands are only mentioned as a connected physical phenomenon. Taking all of 

this into account it is important to examine transition into plasticity for materials with 

yielding plateau as well as to develop a method of solving problems of plasticity 

theory. 

Chapter 2 describes an example problem of plastic deformation of a rod under 

uniaxial tension that is made of a material with a difference between the stress-strain 

diagram in a point and in specimen as a whole (fig. 2.1). That means its behavior 

under soft and hard loading shows different paths of approaching the state of 

hardening after exceeding elasticity. 

Chapter 3 examines a question of development of band of displacement 

discontinuity that allows obtaining the velocity of plastic band. Using this as a basis a 
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Yoffe problem is considered, and solving it shows a connection between the velocity 

of displacement discontinuity band and size of the band, that leads to expression of 

velocity of plastic wave. 

Chapter 4 describes solutions of problems of development of plasticity bands 

in a strip under pure bending and in a pipe under internal pressure. 

Keywords: yielding plane, uni- and two-dimensional construction elements, 

alternating loading, Lüders bands, Yoffe problem. 
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ВСТУП 

Обґрунтування вибору теми дослідження. Механіка матеріалів з 

майданчиком плинності, для яких притаманне явище локалізації пластичної 

деформації, є галуззю, що розвивається з 1960-х рр. Теоретичні та 

експериментальні дослідження цього класу матеріалів дозволяють розширити 

сфери їх застосування. Актуальність таких досліджень зумовлена й вимогами 

до сучасних технічних рішень, зокрема щодо підвищеної стійкості до 

знакозмінних і вібраційних навантажень, більшої здатності до пластичної 

деформації без руйнування, ніж у матеріалів, що зазвичай використовуються 

для забезпечення міцності та цілісності конструкцій. Саме наявність двох 

стійких форм рівноваги та візуально помітного настання пластичної течії 

дозволила широко використовувати ці матеріали в таких галузях, як 

супутникобудування, медичні технології, конструювання датчиків. До таких 

матеріалів відносяться матеріали з пам’яттю форми, наприклад, нітінол (нікелід 

титану NiTi) та сплави на нікелю і марганцю (FeNiCoAl, CuAlMn, FeMnAlNi). 

У будівельній галузі клас матеріалів з майданчиком плинності 

використовується, починаючи з 1990-х рр. [43, 56, 67, 73]. Ці матеріали, 

незважаючи навіть на їхню низьку, порівняно зі сталями, несучу здатність, 

мають такі переваги, як стійкість до періодичних, знакозмінних навантажень, 

вібрацій, легкість, корозійну стійкість, набагато більшу межу руйнування в 

стані пластичності. Ці характеристики роблять їх придатними для застосувань, 

пов’язаних із реконструкцією та мінімізацією ризиків. 

На практиці матеріали з майданчиком плинності знайшли застосування, 

зокрема в будівельній галузі, машинобудуванні, металургії та в області 

досліджень матеріалів. Як приклад, можливе покращення сейсмічних 

показників будівель шляхом додавання елементів із матеріалів досліджуваного 

класу до основної надміцної конструкції із звичайних матеріалів, яка має 

витримувати перші основні поштовхи. Додавання елементів з описаних 

матеріалів може суттєво підвищити ресурс стійкості будівель до повторних 
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поштовхів (афтершоків), які хоча і мають меншу амплітуду та енергію, можуть 

характеризуватися більшою частотою і продовжувати знижувати несучу 

здатність основної конструкції. 

Таким чином, саме описані відмінності матеріалів з майданчиком 

плинності від традиційних конструкційних матеріалів відкривають можливості 

їх застосування в нетипових випадках. Це зумовлює необхідність проведення 

більш детальних досліджень в межах будівельної механіки для глибшого 

розуміння механічних процесів, теоретичного осмислення та моделювання, 

заснованого на точних математичних моделях. 

Експериментально встановлено, що при розтягуванні плоского зразка з 

м'якої сталі на його полірованій поверхні утворюються тонкі, неясно видимі 

лінії, що проходять під деяким кутом до напрямку розтягування. Ці лінії, відомі 

інженерам під назвою смуг Людерса, з'являються в момент падіння 

навантаження на межі плинності і поширюються по довжині стрижня. 

Спостереження за появою і поширенням цих ліній на поверхні сталевих зразків 

дають цінну інформацію про характер явищ, що відбуваються в структурі 

матеріалу в момент початку пластичної деформації.  

Опису цих явищ в сучасній літературі присвячено багато робіт. У них 

зазвичай розглядаються модельні задачі для деяких моделей поведінки 

матеріалу та чисельні моделі для дослідження поведінки стандартних 

конструкційних елементів, таких як балки та тонкостінні труби. Для 

завершеності аналізу необхідно доопрацювання моделей, зокрема процесу 

розвитку пластичної деформації в точці для матеріалів, які мають майданчик 

плинності. 
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Отже, дослідження неоднорідної пластичної деформації на майданчику 

плинності є актуальним і перспективним, що й обумовило вибір теми даної 

дисертаційної роботи. Таке трактування задачі дозволяє отримати реалістичні 

картини розвитку пластичної деформації в одно- та двовимірному випадку. 

Зв'язок роботи з науковими програмами, планами, темами. 

Дисертаційну роботу було виконано у межах індивідуального плану роботи 

аспіранта та в рамках держбюджетної теми № 1-301-15 «Розробка методик 

розв’язку фундаментальних задач міцності та руйнування кусково-однорідних 

тіл, скомпонованих з інтелектуальних матеріалів» (№ ДР 015U002393). 

Мета і задачі дослідження. Мета роботи полягає у розробленні 

розрахункового апарату та встановленні закономірностей явища локалізації 

пластичної деформації одно- та двовимірних конструкційних елементів з 

майданчиком плинності, а також у теоретичному обґрунтуванні виникнення та 

розвитку ліній Людерса. 

Для досягнення цієї мети було потрібно вирішити такі задачі: 

 провести аналіз і класифікацію наявних підходів до моделювання 

поведінки матеріалу на майданчику плинності; 

 побудувати розв’язки задач про деформацію матеріалів у стані 

плинності з утворенням та пересуванням смуг розриву деформації; 

 сформулювати критерій переміщення смуги зсуву; 

 розробити модель переміщень смуги зсуву і утворення системи смуг 

для матеріалів, що зміцнюються при досягненні граничного стану. 

Об'єктом дослідження є процес пластичного деформування одно- та 

двовимірних конструкційних елементів з майданчиком плинності. 

Предметом дослідження є моделі і задачі локалізації пластичної 

деформації одно- та двовимірних конструкційних елементів з майданчиком 

плинності. 

Методи дослідження. Математичну модель матеріалу з майданчиком 

плинності, що знаходиться у пластичному стані, побудовано з використанням 

представлень полоси локалізації як полоси зсуву та розриву переміщень з 
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використанням функції Йоффе та розв’язку задачі Йоффе. Чисельна реалізація 

запропонованих алгоритмів здійснена на мові програмування SciLab для 

одновимірних задач та у чисельному пакеті Simulia ABAQUS Learning Edition з 

використанням методу скінченних елементів для двовимірних задач. 

Наукова новизна отриманих результатів полягає у побудові 

математичної моделі одновимірної пластичної деформації для матеріалу з 

майданчиком плинності, що має такі особливості: врахування параметру часу 

та розбіжності між станом напружено-деформованого стану у точці та у зразку 

в цілому. 

Вперше: 

1) побудовано математичну модель одновимірної пластичної 

деформації для матеріалу з майданчиком плинності, що має такі особливості: 

врахування параметру часу та розбіжності між станом напружено-

деформованого стану у точці та у зразку в цілому;  

2) задачу руху лінії розриву деформації вздовж фронту хвилі 

пластичної деформації зведено до задачі Йоффе, що є подальшим розвитком 

розв’язків задач динаміки за допомогою функції Йоффе. Функцію Йоффе, що 

зазвичай використовується у математичних моделях розвитку тріщин у деяких 

окремих типах матеріалів, було використано для розв’язку задач теорії 

пластичності після обґрунтування подібності деяких процесів у тріщинах 

моделі Йоффе та у фронті пластичної локалізації; 

3) отримано розв’язок задачі Йоффе у формі співвідношення між 

швидкістю руху розриву уздовж фронту хвилі та відношенням розміру зерна до 

розміру лінії розриву, що дозволило визначити швидкість руху розриву для 

матеріалу; 

4) в результаті розв’язку задач Йоффе встановлено залежність 

швидкості руху лінії розриву деформації від її довжини, що дозволило здобути 

уточнення формули для швидкості фронту; 

5) побудовано чисельний розв'язок задач про розвиток фронту 

пластичної деформації в трубі при внутрішньому тиску та полоси при чистому 
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згині. 

Удосконалено: 

6) модель пластичного деформування при знакозмінних та циклічних 

навантаженнях розвинуто за допомогою нової теорії течії з комбінованим 

зміцненням, яка дозволяє описувати майданчик плинності та його особливості 

при знакозмінному навантаженні. 

Дістали подальший розвиток: 

7) моделі пластичної деформації у станах перед втратою стійкості та 

руйнуванням, куди було додано параметр часу, що дозволяє описати динамічні 

процеси. За допомогою такої моделі розглянуто задачу розповсюдження 

фронту хвилі пластичної деформації та встановлено швидкість 

розповсюдження фронту. 

Достовірність наукових положень і висновків дисертаційної роботи. 

Достовірність отриманих автором результатів забезпечується строгими 

математичними постановками та викладками; використанням відомих 

апробованих моделей теорій пластичності; математичним обґрунтуванням 

чисельних алгоритмів, зокрема методу скінченних елементів; узгодженням 

розв’язків із відомими з літературних джерел, отриманими за допомогою інших 

методів, зокрема збігом з відомими експериментальними даними; 

відповідністю результатів існуючим у теоріях пластичної течії науковим 

уявленням. 

Практичне значення отриманих результатів полягає в можливості 

використання запропонованих методик для вивчення явища локалізації 

пластичної деформації та розповсюдження фронту пластичної деформації для 

матеріалів з майданчиком плинності, та оцінки швидкості розвитку смуги 

пластичної локалізації. Результати, отримані у роботі, можуть бути використані 

для опису поведінки ряду матеріалів з майданчиком плинності в будівельній 

галузі, металургії, машинобудуванні тощо. Розроблені методики дозволяють 

прогнозувати поведінку матеріалів перед втратою конструкційної стійкості та 

розраховувати оцінку стану конструкційних елементів перед руйнуванням. 
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Результати роботи застосовуються у навчальному процесі Дніпровського 

національного університету імені Олеся Гончара під час викладання 

навчальних дисциплін «Опір матеріалів», «Моделі і методи інженерії міцності», 

«Механіка матеріалів в інженерних задачах», «Моделі і методи теорії 

пластичності», та були впроваджені в низці досліджень в ДП «Дніпровський 

проектний інститут», які присвячені вирішенню актуальних проблем 

використання новітніх класів матеріалів у будівельній галузі та реконструкції. 

Публікації та особистий внесок здобувача. За темою дисертації 

опубліковано 11 наукових праць, з них: 5 наукових статей – у виданнях, що 

увійшли до переліку наукових фахових видань України з технічних наук; 1 

стаття – у фаховому виданні з фізико-математичних наук; 4 тези – в матеріалах 

наукових конференцій; 1 стаття – у закордонному міжнародному періодичному 

виданні, що індексуються в наукометричній базі Scopus. 

Апробація результатів дисертації. Окремі результати дисертаційної 

роботи доповідалися на: 

 V Міжнародній конференції «Нелінійна динаміка-2016», Харків, 27-

30 вересня 2016 р.; 

 VI Міжнародній науково-технічній конференції «Актуальні проблеми 

прикладної механіки та міцності конструкцій», Запоріжжя, 25-28 травня 

2017 р.; 

 Міжнародній науковій конференції «Сучасні проблеми механіки та 

математики», Львів, 22–25 травня 2018 р.; 

 Міжнародній науковій конференції «Математичні проблеми технічної 

механіки та прикладної математики-2019», Кам'янське, 15-18 квітня 2019 р.; 

 Міжнародній науковій конференції «Математичні проблеми технічної 

механіки та прикладної математики-2025», Дніпро, 15-17 квітня 2025 р. 

У цілому дисертація обговорювалася на: 

 науковому семінарі кафедри теоретичної та комп'ютерної механіки 

Дніпровського національного університету імені Олеся Гончара, 2025 р.; 

 розширеному науково-технічному семінарі «Проблеми нелінійної 
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механіки» при кафедрі будівельної і теоретичної механіки та опору матеріалів 

Навчально-наукового інституту «Придніпровська державна академія 

будівництва та архітектури» Українського державного університету науки і 

технологій, 2025 р. 

Особистий внесок здобувача в опубліковані праці. Роботи [2, 4, 9, 10] 

опубліковані без співавторів. В роботах [1, 7, 8, 11] постановка задачі про опис 

локалізації пластичної деформації за допомогою розв’язку задачі про рух 

тріщини II типу та її вирішення належать д.ф.-м.н., професору 

Ю. А. Чернякову, обговорення результатів та формулювання висновків 

проведені разом з ним. Здобувачеві належить побудова розв’язку, отримання і 

обробка результатів. В роботах [5, 6] постановки задач, їх розв’язання, чисельне 

моделювання та обробка результатів належать здобувачеві, обговорення 

результатів та формулювання висновків проведено разом з к.ф.-м.н., доц. 

Т. В. Ходанен. В роботі [3] формулюванні задачі про процес пластичної 

деформації у лінії локалізації, її розв’язання, чисельне моделювання та обробка 

результатів належать здобувачеві, обговорення результатів та формулювання 

висновків проведено разом з д.ф.-м.н., проф. А. Є. Шевельовою та к.ф.-м.н. 

А. Г. Шевченком. 

Структура та обсяг дисертації. Дисертація складається з анотації, 

вступу, чотирьох розділів, висновків, списку використаних джерел та чотирьох 

додатків. Загальний обсяг дисертації становить 146 сторінок. Дисертація 

містить 45 рисунків, 2 таблиці та список використаних джерел зі 138 

найменувань, а основний текст складає 110 сторінок. 
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РОЗДІЛ 1.  ОГЛЯД ЛІТЕРАТУРИ 

1.1. Фізичні основи пластичного деформування 

Математичні моделі механіки пластичності та теорії плинності 

розглядалися у роботах Г. І. Баренблатта, С. О. Христиановича, 

В. М. Кукуджанова, Ю. А. Чернякова, П. О. Стеблянка, А. Г. Зеленського, 

В. П. Пошивалова, B. A. Bilby, A. H. Cottrell, Z. P. Bažant, W. Lüders, A. Nadai, 

W. G. Johnston, G. Hahn, E. O. Hall, J. Shaw, E. C. Aifantis, S. Kyriakides, 

F. Yoshida, A. Needleman, J. Zhang, Y. Jiang, L. Sluys, N. Dowling, K. Broberg, 

E. H. Yoffe. 

Експериментально встановлено [83, 106, 114, 115], що при одноосьовому 

розтягуванні (стисканні) стрижня пластичне деформування на майданчику 

плинності пов'язано з просуванням фронту пластичної деформації, що разділяє 

стрижень на область пластичного деформування (деформації Людерса) і 

області пружного деформування. Було звернуто увагу і на нестійкість 

пластичного деформування, яка на макроскопічному рівні проявляється як 

переривчаста деформація [59].  

Перші згадки про смуги Людерса відносяться до середини XIX  

століття [95, 106]. В експериментах [83, 115] показано, що пластична 

деформація на майданчику плинності розвивається за рахунок поширення смуг 

ковзання Людерса по довжині зразка [38]. У кожен момент часу має місце течія 

уздовж однієї або декількох смуг, поки уздовж них не буде досягнута 

пластична деформація, що відповідає переходу до ділянки зміцнення. Далі 

утворюється нова смуга на деякій відстані від попередньої, і пластична течія 

триває. У підсумку, такий розвиток деформації відповідає моделі ідеальної 

пластичності у масштабі усього зразка, проте істотно неоднорідний 

деформований стан не дає змоги повністю оцінити втрату міцності і 

стійкості [11, 21-25, 65]. Результати згаданих експериментів наводять на думку 

про недостатність класичного трактування ідеальної пластичності для 

практичного застосування, в якій абсолютно не враховано нестійкість 
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матеріалу, пов'язану з переривчастою деформацією [69, 71, 76].  

У даний час прийнято дві основні гіпотези нестійкої течії. Відповідно до 

першої, існування верхньої межі плинності в [61] пов'язують із закріпленням 

дислокацій в «атмосферах», які формуються навколо атомів вуглецю та азоту. 

Як наслідок, початкове переміщення дислокацій вимагає більш високих 

напружень для звільнення з цих «атмосфер», ніж для подальшого руху. В 

роботі [76] падіння напружень пов'язують із розмноженням дислокацій. З 

ростом числа рухомих дислокацій напруження, необхідні для їх переміщення, 

зменшуються.  

Одновимірна модель [70] розмноження дислокацій, пов’язана з падінням 

навантаження у момент, коли починається процес плинності, була узагальнена 

в роботі [116] і використовувалася для прогнозування виникнення неоднорідної 

деформації при крученні сталевих стрижнів.  

Пізніше в [128–136] використовували подібне формулювання для 

введення початкового різкого падіння навантаження. Така поведінка із 

розм’якшення переходить в стандартне зміцнення при певній деформації, і 

таким чином створює необхідне падіння навантаження, що призводить до 

поширення області нестійкості, як показано в [130].  

Спроби опису явища локалізованої пластичної течії в роботах [82, 84, 85, 

93, 94, 102, 103] були спрямовані на аналіз різних уточнень і доповнень до 

класичних рівнянь пластичного стану. Чисельні результати, отримані авторами, 

є близькими до експериментальних даних [42, 60, 63] про пластичну течію у 

відповідних матеріалах. При цьому можна вказати на значну чутливість 

результатів до обраного класу моделей. Використовувані методики неминуче 

призводять до «реально» спадаючої ділянки на діаграмі напружень-деформацій, 

що дозволяє провести аналогії між поведінкою при пластичній локалізації та 

знеміцненні. Були спроби розгляду градієнтних теорій, що дозволяють повною 

мірою описувати всі характерні для майданчика плинності ефекти. Так, в [64] 

представлена модифікація рівнянь стану, яка дозволяє отримати пік-зуб заданої 

амплітуди в залежності від просторової конфігурації зерен і їх розміру. 
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У роботах [7, 8, 86, 87] була запропонована континуальна теорія 

пластичної течії з комбінованим зміцненням для матеріалів з майданчиком 

плинності. Теорія дозволила описати майданчик плинності і ділянку зміцнення 

при одноосьовому навантаженні, а також деформацію при м'якому циклічному 

навантаженні на майданчику плинності. У даній роботі показано, що 

вищевказаний варіант теорії течії [86, 87] застосовується для опису 

переривчастого характеру деформації при жорсткому навантаженні.  

Наведені в роботі дослідження свідчать про те, що поведінку матеріалу на 

майданчику плинності вивчено досить докладно в рамках моделі теорії 

пластичності. Також існує достатня кількість експериментальних даних, що 

дозволяє розглядати у деталях процес переходу пружного стану у пластичний. 

Але поясненню фізичних властивостей матеріалів та явищ, що відбуваються за 

значень напружень між межею пружності та початком зміцнення, було 

приділено недостатньо уваги. Такі характеристики переходу у пластичний стан, 

як наявність повільної пластичної хвилі сталої швидкості та її зв’язок з 

утворенням смуг Людерса розглядаються лише як зв’язані фізичні 

особливості [72]. З огляду на це, випливає важливість вивчення процесу 

переходу у пластичний стан для матеріалів з майданчиком плинності, а також 

розроблення ефективної методики розв’язання задач теорії пластичності.  

1.2. Модель Баренблатта 

Розглянемо модель Баренблатта розвитку лінії відриву [44]. Питання про 

формування рівноважних тріщин під час крихкого руйнування матеріалу постає 

як проблема в класичній теорії пружності, заснованої на певних дуже загальних 

гіпотезах щодо структури тріщини і сил взаємодії її протилежних берегів. 

Також при розгляді такого типу задач використовується гіпотеза про скінченні 

напруження на кінцях тріщини, або, що є еквівалентним, про плавне з’єднання 

протилежних берегів тріщини на її кінцях. Останню гіпотезу вперше висунув 

Христианович [9, 12, 77] при дослідженні формування тріщин у гірських 

породах. Використовуючи цю гіпотезу, здавалося, що можна вирішити ряд 
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проблем, пов'язаних з розвитком тріщин у гірських породах [1, 47, 49, 89]. 

При розгляді проблем розвитку тріщин в гірських породах можна 

знехтувати ефектом злипання матеріалу в порівнянні з ефектом тиску порід, так 

що нехтування силою зчеплення матеріалу в [1, 47, 49, 89] може бути 

виправданим. Проте в інших задачах крихкого руйнування (наприклад, в 

задачах крихкого руйнування металевих конструкцій) коефіцієнти типу тиску 

породи відсутні, а розгляд сил злипання матеріалу стає абсолютно 

необхідним [4, 27, 37]. Схоже, що інтенсивність сил злипання та їх розподіл 

можна з достатньою точністю характеризувати деякою новою універсальною 

властивістю матеріалу, який називається модулем злипання [20, 47]. Більше 

того, розміри тріщин і інші їхні властивості однозначно визначаються 

прикладеними навантаженнями і модулем злипання. Для визначення модуля 

злипання матеріалу можна використовувати порівняно прості тести. 

Розглянемо рівноважні тріщини в крихкому матеріалі, тобто тріщини, що 

підтримують постійні розміри під впливом прикладеної системи сил. Більше 

того, обмежимося тут розглядом найпростішого випадку тріщини в одній 

площині (так що точки на поверхні тріщини в недеформованому стані 

знаходяться в одній площині – площині тріщини). Цей випадок виникає, коли 

прикладені напруження симетричні відносно площини тріщини; загальний 

випадок розглядатиметься окремо. 

Таким чином, розглядається задача, що зображена на рис. 1.1. Дане 

симетричне розривне навантаження щодо площини тріщини застосовується до 

ізотропного, крихкого, пружного твердого тіла, розміри якого вважаються 

великими порівняно з довжиною тріщини. Передбачається, що результуюча 

сила, прикладена до обох берегів тріщини, обмежена. Зокрема навантаження 

може застосовуватися на частині самої поверхні тріщини. Напруження при 

віддалені від тріщини явно сходяться до нуля. 

Якщо прикладене навантаження є достатньо великим, то має місце 

крихке руйнування матеріалу, що повинно відбуватися в площині симетрії 

прикладеного навантаження. 
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Рисунок 1.1 – Схематичне зображення задачі, що розглядається. 

Тріщина та прикладені навантаження 

Задача полягає в пошуку розмірів тріщини, що відповідають заданому 

навантаженню та іншим параметрам тріщини. Звернімося спочатку до 

дослідження більш простого випадку, коли навантаження прикладається до 

берегів тріщини. Передбачається, що в тілі є певний початковий розмір, на який 

накладено деяке розривне навантаження, яке вважається нормальним до 

площини тріщини. В результаті крихкого руйнування та цей розлом 

розширюється (залишаючись симетричним через симетричність навантажень і 

ізотропію твердого тіла) до певних розмірів. 

Поперечний переріз (а) і площина (b) такої тріщини схематично показані 

на рис. 1.2. У внутрішній області протилежні береги тріщини знаходяться на 

значній відстані, так що взаємодія між берегами не відбувається. Внутрішня 

область тріщини має дві підобласті la  та lb ; у першій прикладене 

навантаження діє на протилежні береги тріщини, а в другій протилежні береги 

тріщини вільні від напружень. 

У кінцевій області протилежні береги тріщини наближаються одна до 

одної, так що існують дуже великі сили взаємодії, що притягують одну сторону 

тріщини до іншої. Як відомо, інтенсивність сили взаємодії, що діє в матеріалі 

(рис. 1.3), сильно залежить від відстані між тілами y [47, 51]. Починаючи від 

нормальної міжатомної відстані y b  інтенсивність швидко зростає. 
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Рисунок 1.2 – Схематичне зображеня тріщіни: а – поперечний переріз, 

б – площина тріщини 

 

Рисунок 1.3 –  Сила взаємодії між берегами в залежності від відстані 

Потім, по мірі зростання, для деякої критичної відстані інтенсивність 

взаємодії досягає максимального значення, що має порядок модуля Юнга, після 

чого швидко спадає зі збільшенням відстані. 

Точне визначення системи сил зчеплення, що діють в кінцевій області, 

достатньо важке. Проте можна ввести певні гіпотези, які дозволяють обмежити 
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розподіл однієї складової універсальної характеристики сил зчеплення для 

даного матеріалу. 

Перша гіпотеза. Розмір d скінченної області невеликий у порівнянні з 

розміром всієї тріщини. 

Друга гіпотеза. Розподіл зміщення в кінцевій області не залежить від 

прикладеного навантаження, і для даного матеріалу в заданих умовах 

(температура, склад і тиск навколишнього середовища, тощо) завжди 

однаковий. 

Іншими словами, згідно з цією гіпотезою, кінці всіх тріщин в даному 

матеріалі в заданих умовах завжди однакові. Під час розвитку тріщини кінцева 

область рухається уздовж матеріалу, але розподіл геометричних викривлень 

(зміщень і деформацій) в площині, нормальній до напрямку тріщини, в області 

навколо вершини тріщини, залишаться незмінним. Сили когезії, що притягують 

протилежні береги тріщини один до одного, залежать тільки від взаємного 

віддалення берегів (тобто від розподілу зміщення); отже, відповідно до 

сформульованої гіпотези, ці напруження будуть однаковими. 

Фіксована форма кінцевої ділянки тріщини відповідає максимально 

можливому опору. Підкреслюємо, що з огляду на незворотність тріщин, що 

виникають у більшості матеріалів, друга гіпотеза застосовується тільки до тих 

рівноважних тріщин, які утворюються при первинному розриві спочатку 

непошкодженого крихкого твердого тіла, але не до тих тріщин, які 

утворюються штучно без подальшого поширення або при зменшенні 

навантаження внаслідок попереднього розтріскування при деякому більшому 

навантаженні. Для останніх типів тріщин напруження в кінцевій області може 

бути різним (меншим); ці типи тріщин виключені з цього обговорення. 

Третя гіпотеза. Протилежні береги тріщини плавно з'єднані на кінцях 

або, що означає те саме, напруження на кінці тріщини скінченні. 

Як вже зазначалося вище, цю гіпотезу вперше висловив Христианович 

щодо утворення тріщин у гірських породах [77]. 

Зазначені гіпотези роблять можливим розв'язок розглянутої задачі. 
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Відзначимо різницю, що виникає у випадку, коли прикладені навантаження 

знаходяться не на поверхні тріщини, а всередині твердого тіла. Принципово в 

цьому випадку нічого не змінюється. Власне, будемо представляти напружений 

стан, що діє в твердому тілі з тріщиною під дією певного навантаження, 

прикладеного всередині твердого тіла, сумою двох напружених станів. Один 

цих станів відповідає стану безперервного твердого тіла без тріщини, і стану, 

що виникає під дією заданої системи навантаження. Інший стан напружень 

відповідає стану тіла з навантаженням, прикладене до поверхні тріщини. 

Загальні нормальні і дотичні напруження на поверхні внутрішньої області 

тріщини мають бути рівними нулю, оскільки поверхня внутрішньої області 

тріщини вільна від напружень. Тому навантаження, що прикладено до поверхні 

внутрішньої області тріщини, являє собою стискальне нормальне напруження, 

рівне за величиною і протилежне за знаком розтягувальним напруженням, що 

з'являються в площині симетрії прикладеного навантаження в тілі без тріщини. 

У кінцевій області для другого стану нормальні напруження дорівнюють 

напруженням, спричиненими силами злипання, що відповідає напруженням 

першого стану. Зважаючи на те, що площина тріщини є площиною симетрії 

прикладеного навантаження, напруження зсуву на поверхні тріщини відсутні. 

Нормальні переміщення точок поверхні тріщини визначаються тільки другим 

станом, оскільки вони в першому стані дорівнюють нулю. 

Таким чином, зміна співвідношення з розглянутим раніше особливим 

випадком полягає в тому, що внутрішня область тріщини тепер не потрапляє в 

підобласті, а навантаження поверхні тріщини прикладено до всієї внутрішньої 

області. Три гіпотези, сформульовані вище, застосовуються також до цього 

більш загального випадку. При цьому перша і третя гіпотезі не потребують 

додаткових пояснень. Що стосується другої гіпотези, то можливість її 

застосування пояснюється тим, що зміни в напруженнях в кінцевій області під 

впливом прикладеного навантаження мають набагато більший порядок, ніж 

саме прикладене навантаження. Як було показано раніше, напруження в 

кінцевій області мають порядок модуля Юнга, тобто вони значно перевищують 
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величину прикладеного навантаження. Тому в загальному випадку також 

можна знехтувати змінами напружень, що виникають на поверхні тріщини в 

кінцевій області під впливом прикладеного навантаження, і враховувати тільки 

розподіл напружень і переміщень в кінцевій області, які не залежать від типу 

навантаження, тобто можна застосувати другу гіпотезу. 

1.3. Особливості пластичного деформування на майданчику плинності 

Експериментально встановлено, що якщо відполірований до дзеркального 

блиску зразок з м'якої сталі, наприклад, полосу, піддати розтягу, то в момент 

зниження навантаження на межі плинності на полірованій поверхні полоси 

утворюються тонкі ледь помітні лінії, що проходять під певним кутом до 

напрямку розтягування. Ці лінії, відомі як смуги Людерса, швидко 

поширюються по довжині стрижня. Спостереження за появою і поширенням 

цих ліній на поверхні сталевих зразків дають цінну інформацію про характер 

явищ, що відбуваються в структурі матеріалу в момент початку пластичної 

деформації. Зважаючи на регулярність розташування цих ліній на напружених 

зразках з м'якої сталі і точну орієнтацію прошарків ковзання відносно 

напрямків головних нормальних напружень, значний інтерес становить 

вивчення механізму їх виникнення, адже існує тісний зв'язок між орієнтацією 

цих прошарків ковзання і напруженим станом сталевого зразка.  

Численні приклади утворення смуг Людерса наведені у роботі Надаї [99]. 

Відзначається, що при розтягуванні перші полоси зазвичай з'являються на 

поверхні зразка в околі його потовщення – при переході від середньої частини 

до голівки. Вузькі матові смуги і лінії, які представляють перетин пластичних 

прошарків з поверхнею зразка, дозволяють розрізнити напрям відносного руху 

прошарків, що ковзають один по одному. Боріздки з'являються, коли матові 

смуги орієнтовані під кутом близько 35°–45° до осі зразка [100], пологі ж 

відкоси утворюються, коли матові смуги перпендикулярні напрямку 

розтягування. Там, де напрямок ковзання проходить паралельно поверхні 

зразків, утворюються неглибокі боріздки. Під мікроскопом плями або лусочки, 
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видимі на цих фігурах ковзання, часто виявляються групами кристалічних 

зерен, що перемістилися уздовж сусідніх прошарків і піддалися пластичній 

деформації.  

Для механіки пластичного стану має особливе значення наступна 

властивість прошарків ковзання або течії. Площини ковзання тонких 

прошарків, в яких залізо деформується більше, ніж деінде в іншому місці, 

приблизно збігаються з двома площинками головних дотичних напружень. 

Кут   між шарами ковзання та віссю зразка зазвичай при розтягуванні дещо 

більше 47°, а при стискуванні трохи менше, ніж 45° [101]. Оскільки ці 

властивості прошарків ковзання існують також при складному [13] і 

тривимірному розподілі напруження, то спостереження, які стосуються 

розташування цих прошарків, надають цінну інформацію в дослідженні 

напружених станів при пластичних деформаціях, що і буде використовуватися 

в подальшому. 

Пластична течія полікристала заліза відбувається під впливом дотичних 

напружень шляхом зсуву по окремим зернам – кристалам (рис. 1.4). У залізі 

кожне з зерен має різне орієнтування кристалічної решітки, що ускладнює 

загальний зсув однієї частини зразка по інший. 

 

Рисунок 1.4 – Схема зсуву однієї частини полікристала відносно до іншої 

Перешкоди зсуву створюють і межі зерен, де атомна решітка викривлена, 

і є відкладення різних включень. Тому опір пластичним деформаціям у заліза, 
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що складається з великого числа зерен, вище, ніж у окремого монокристала 

(зерна). Хаотичне орієнтування великої кількості зерен призводить до того, що 

в пружній стадії такий матеріал працює як ізотропний. При переході ж 

матеріалу в пластичний стан при хаотичному розташуванні зерен завжди 

знаходяться площини, по яким діють найбільші дотичні напруження, і 

більшість зерен розташовано сприятливо для зсуву. За цими окремими 

площинками і відбувається найбільш інтенсивна пластична течія. 

У механізмі утворення прошарків течії при випробуваннях на розтяг 

зразків із м'якої сталі багато до цього часу залишається невідомим. 

Встановлено, проте, що умови утворення ліній ковзання залежать від ряду 

важливих механічних чинників: форми зразка; зв’язків його з 

кріпленнями [109]; числа ступенів свободи руху головок або кріплень 

випробувальної машини; ексцентриситету навантаження; жорсткості 

випробувальної машини (вираженої співвідношенням /P x  , де Р – 

навантаження, x – відносне переміщення захоплень машини, зразок 

передбачається абсолютно жорстким); розмірів зерен сталі (дрібнозерниста 

нормалізована м'яка сталь зазвичай дає різкий, а грубозерниста сталь – 

поступовий перехід від пружної до пластичної частин кривої 

напружень-деформацій).  

Сталь в основному складається з фериту з включенням перліту (рис. 1.5). 

Зерна перліту значно міцніше феритової основи. Ці дві різні по міцності, 

пружним і пластичним показниками складові і визначають поведінку 

вуглецевої сталі під дією навантаження. Найбільшу перешкоду утворенню 

зрушень в зернах фериту створюють в сталі міцніші зерна перліту (рис. 1.5), 

тому міцність сталі значно вище міцності чистого заліза.  

При подальшому збільшенні навантаження дислокації починають 

накопичуватися поблизу меж зерен фериту, що сприяє появі окремих зсувів в 

зернах фериту; пропорційність між напруженнями і деформаціями 

порушується. Подальше збільшення напруження сприяє збільшенню кількості 

та розвитку ліній зсуву в зернах фериту. 
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Рисунок 1.5 – Фрагмент мікроструктури сталі в місці проходження лінії зсуву 

Зерна фериту до розвитку великих деформацій виробу (зразка) при 

постійних напруженнях – до утворення майданчика плинності. Цій стадії 

пластичної течії відповідають напруження межі плинності. Протяжність 

майданчика плинності, наприклад, у маловуглецевих і деяких низьколегованих 

сталей становить приблизно 1,5–2%, а в окремих сплавах нікелю – більше 2% 

[83]. Розвиток деформацій відбувається в результаті пружного деформування і 

великих незворотних зсувів по площинках ковзання зерен фериту. Тому після 

зняття навантаження пружна частина деформацій відновлюється, а необоротна 

залишається, приводячи до залишкових деформацій. Подальший розвиток 

деформацій зразка ускладняється більш міцними і жорсткими зернами перліту. 

Тому, щоб утворилися загальні площини зсуву в зразку, зсуви в окремих зернах 

фериту повинні обтікати зерна перліту або розколювати слабкі їх ділянки 

(рис. 1.5), для чого необхідно підвищення напружень.  

Однак якщо пластичні деформації виникають в дуже тонкому шарі, і вся 

«робоча» ділянка зменшується до розмірів товщини цього шару плинності, 

тобто до дуже малої величини, то пластичні деформації зростають при досить 

високих швидкостях деформування (зсуву). В цьому і полягає додаткова 

причина збільшення навантаження, що викликає появу «верхньої» межі 

плинності.  
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Незважаючи на те, що характер виникнення пластичних деформацій в 

плоских зразках, виготовлених з металів, що мають різко виражену межу 

плинності, помітно різниться для сталей різних видів і для кольорових металів, 

все ж таки можна сформулювати загальний висновок. У деяких зразків з 

кременистої сталі (що містить менше 0,02% вуглецю) або зразків з м'якої сталі 

прямокутного поперечного перерізу з малим відношенням товщини до ширини 

перерізу на межі плинності спостерігаються чітко окреслені тонкі шари 

ковзання. 

Експериментальні дані у роботах [60, 83] показують низку досліджень 

типових зразків, виготовлених з матеріалів, для яких характерне інтенсивне 

проявлення процесів плинності. Діаграма напружень-деформацій    для 

матеріалу в точці схематично показана на рис. 1.6. 

 

Рисунок 1.6 – Діаграма одновісного розтягу для м'якої сталі при жорсткому 

навантаженні з постійною швидкістю торцевих кріплень; γ1 – деформація 

Людерса 

Після досягнення межі пропорційності за значення напружень 
max  

наступає стан текучості, спостерігається пік-зуб, при якому напруження різко 
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падають до значення 
0 . При подальшому збільшенні деформації напруження 

лишаються постійними і рівними 
0 . Після того, як здатність матеріалу до 

текучості вичерпується, починається повторне збільшення напружень, і коли 

вони знову досягають значення 
max , процеси плинності заміщуються 

процесами зміцнення [5]. Деформація Людерса, що позначена на рис. 1.6 як 
1 , 

показує сумарний приріст деформації на початку та в кінці процесу плинності, 

коли обидва рази напруження сягають 
max .  

На рис. 1.7 показано, як в полосі постійної товщини по мірі збільшення 

деформацій розвивається область пластичності – автори роботи [83] показують, 

що при відповідній хімічній обробці поверхні полоси та освітленні область, де 

вичерпується здатність текучості, можна явно побачити в оптичному діапазоні. 

 

Рисунок 1.7 – Розвиток області пластичності (області, в якій деформації 

досягли деформації Людерса) при одновісному розтягуванні 

полоси за даними [83] 

Стан на межі пропорційності перед початком плинності позначено сірим 

кольором, а стан, коли вичерпано майданчик плинності перед початком 

зміцнення, позначено білим кольором. Кожен стан 1–17 відповідає моменту 

через рівномірні проміжки часу. У стані 1 у зразку досягається стан межі 

пропорційності. Коли здатність до пружної поведінки вичерпується, в одній з 

точок (яка контролюється через заздалегідь зроблену початкову недосконалість 

біля лівого кріплення) починається процес плинності, допоки в точці не 



40 

наступає стан перед зміцненням, і плинність починає розвиватись у наступній 

точці. Поступово при збільшенні деформації область, в якій пройдено стан 

плинності, займає весь зразок (2-16 на рис. 1.7), і в стані 17 весь матеріал зразка 

(кріплення не враховуються) знаходиться в стані початку процесу зміцнення. 

Висновки до розділу 1 

1. Наведений в роботі огляд досліджень свідчить, що поведінку матеріалу 

на майданчику плинності вивчено досить докладно в рамках моделі теорії 

пластичності. Також існує достатня кількість експериментальних даних, що 

дозволяє розглядати у деталях процес переходу пружного стану у пластичний. 

Але поясненню фізичних властивостей матеріалів та явищ, що відбуваються за 

значень напружень між межею пружності та початком зміцнення, було 

приділено недостатньо уваги. 

2. Такі характеристики переходу у пластичний стан як наявність 

повільної пластичної хвилі сталої швидкості та її зв’язок з утворенням смуг 

Людерса розглядаються лише як зв’язані фізичні особливості. З огляду на це, 

випливає важливість вивчення процесу переходу у пластичний стан для 

матеріалів з майданчиком плинності, а також розроблення ефективної методики 

розв’язання задач теорії пластичності. 

3. Проведено аналіз експериментальних даних  щодо досліджень типових 

зразків, виготовлених з матеріалів, для яких характерне інтенсивне проявлення 

процесів плинності. Встановлено відповідність між особливостями кривої 

поведінки зразка на діаграмі напружень-деформацій та фізичними станами 

матеріалу, а саме стану локалізації пластичної деформації 
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РОЗДІЛ 2.  ОСОБЛИВОСТІ ПЛАСТИЧНОГО ДЕФОРМУВАННЯ НА 

МАЙДАНЧИКУ ПЛИННОСТІ 

2.1. Вступ до теорії пластичної течії з майданчиком плинності 

Розглянемо наступну теорію пластичної течії з комбінованим зміцненням 

для матеріалів з майданчиком плинності на основі функції пластичності f , 

описаній в [28-36, 58], додано параметр R  що характеризує додаткові процеси 

ізотропного зміцнення, що залежить від поточного опору руху дислокацій. 

Континуальні теорії пластичної течії такого типу також розглядались у [118]. 

Умову плинності записується у формі: 

  1 2( ) : ( ) 0,f R     s α s α  (2.1) 

де α  – девіатор залишкових напружень, що визначає кінематичне  

зміцнення,  tr / 3 s σ σ I  – девіатор тензора напружень Коші. Особливість 

теорії полягає в тому, що сила опору руху дислокацій  R   представляється у 

вигляді суми двох доданків: 

      1 2 ,R R R     (2.2) 

де  1R   – функція розм’якшення, пов'язана зі звільненням дислокацій на 

майданчику плинності,  2R   – функція зміцнення, пов'язана з рухом 

дислокацій; причому    1 20 0 sR R    і 
S  – початкова межа плинності.  

Із принципу градієнтальності, з урахуванням умови плинності (2.1), 

маємо  

 ,p ε N  (2.3) 

де   – пластичний співмножник, N  – напрямний девіатор ( : / 2 1N N ),  
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      2 , 1 2 : .     N s α s α s α    

Швидкості зміни параметрів ізотропного і кінематичного зміцнення задаються 

пропорційними інтенсивності швидкості пластичної деформації зсуву  :  

 0 0 0( ) , , (0) , 1,2.k k k k k kR (R R ) R R k         α N α  (2.4) 

де kR ,
0kR ,

0 0,   – константи матеріалу. 

2.2. Одновісне розтягнення стрижня  

Розглядається стрижень постійного поперечного перерізу, один кінець 

якого закріплений, а на іншому задано переміщення з постійною швидкістю V 

(жорстке навантаження, діаграма напружень-деформацій стрижня показана 

на рис. 2.1). 

 

Рисунок 2.1 – Кусково-лінійна діаграма σ–ε одноосьового 

розтягування матеріала в точці 

У пружному і в пружно-пластичному стані, за умови, що матеріал 

зміцнюється, розподіл деформації в стрижні залишається однорідним. Якщо ж 
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матеріал розм’якшується, то визначальні рівняння припускають безліч рішень з 

неоднорідним розподілом деформації. Пластична деформація може 

локалізуватися в як завгодно малій області, і стрижень може вичерпати несучу 

здатність при досить малій дисипації. 

Як зазначалося вище, пластична деформація розвивається за рахунок 

зростання протяжності пластичної області I  довжини l , в якій деформація 

досягла величини 
L , як показано на рис. 2.2. Таке зростання відбувається на 

ділянці стержня II довжиною l d  . На ділянці II здійснюється перехід з 

точки A на діаграмі матеріалу (рис. 2.1) до точки D. Величина d є параметром 

матеріалу і залежить від мікроструктури (наприклад, від розміру зерна). В 

області III має місце пружне деформування. Коли область II досягає кінця 

стрижня, а протяжність області III стає нульовою, здійснюється перехід до 

ділянки зміцнення.  

 

Рисунок 2.2 – Області пластичності (I), пружності (III) 

та плинності (II) у стрижні 

Опишемо квазістатичний процес деформування стрижня, при якому його 

довжина збільшилася на величину u V t  , де V – швидкість переміщення 

кінця стрижня, t  – час. При переміщенні кінця стрижня на відстань u  до 

пластичної області додається ділянка довжиною l , яка перейде з пружного 

стану в пластичний. Визначимо збільшення довжини всього стрижня u  через 

збільшення довжини кожної області I-III:  
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  .I II IIIV t u u u u         (2.5) 

Зміна довжини пластичної області буде залежати від того, спадають чи 

зростають напруження в області I:  

  
 

 

/ , 0,

/ , 0,
I

l l H
u

l l E

  


  

  
 

 
 (2.6)  

де E – модуль пружності, H – модуль зміцнення в точці B діаграми матеріалу. 

Для області II, де відбувається пластична течія:  

  ,II L L Pu l c t       (2.7) 

де 
Pc  – швидкість поширення фронту пластичної деформації в стрижні. 

Приріст довжини пружної області має вигляд:  

    / ,IIIu L l E    (2.8) 

де   – зміна напружень у стрижні.  

Підставляючи (2.6)-(2.8) у (2.5) отримаємо:  

     / / .L Pl l E c t L l E V t            

Звідси знаходимо вираз для зміни напружень у стрижні за час t :  

    .L P

E
V c t

L l
  


 


 (2.9) 

В різниці L l  компонент l  хоча і відмінний від 0 з фізичних міркувань, 

проте є набагато меншим за загальну довжину зразка L . Це дозволяє спростити 

вираз (2.9): 

   .L P

E
V c t

L
      (2.10) 

Оскільки описаний процес локалізації майданчику плинності на ділянці 
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ширини d займає деякий час t , то при розгляді експерименту зі стрижнем 

доцільно визначити швидкість руху пластичного фронту V d t . При 

достатньому розмірі локалізованої області d по відношенню до довжини 

стрижня L можна спостерігати збільшення кожної окремої ділянки до області 

пластичності у вигляді періодичних коливань на діаграмі майданчику 

плинності зразка на рис. 2.3. 

Якщо на майданчику плинності зразка схематично виділити коливання, 

то кожному приросту ділянки локалізації до пластичної області відповідає  

шлях A-B-C на рис. 2.3, який привносить свою частину пластичної деформації 

Людерса 
L . Перехід A-B на діаграмі відповідає за розм’якшення кожної 

прирощеної локалізованої ділянки. Модуль розм’якшення K тут дорівнює 

 0K dR d . Перехід B-C на діаграмі відповідає зміцненню елементарної 

ділянки стрижня, модуль зміцнення дорівнює модулю зміцнення зразка після 

досягнення точки D і дорівнює  LH dR d  .  

 

Рисунок 2.3 – Коливання напружень на майданчику плинності 

при одноосьовій деформації стрижня 

2.3. Виникнення повільних хвиль пластичності  

Велика частина промислових матеріалів, включаючи метали, полімери, 

ґрунти, бетон і скельні гірські породи, при певних умовах розм’якшуються 
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[110, 111]. Це явище проявляється після досягнення граничного навантаження і 

призводить до виникнення локалізованої деформації з наступним падінням 

напружень. Задачі динаміки подібного роду розглядалися в [48, 115].  

У даній роботі розглядаються матеріали, в яких присутня як ділянка 

розм’якшення, так і зміцнення (матеріали з піком-зубом). Як показано в 

експериментальних дослідженнях [115] і статичному їх аналізі, діаграма 

поведінки матеріалу в точці може бути наближено представлена у вигляді, 

показаному на рис. 2.4. Розм’якшення після досягнення критичного 

навантаження призводить до того, що деформація локалізується у вузьких 

смугах, які часто є попередниками руйнування. Динамічні задачі подібного 

роду вивчені в літературі [74, 75, 78-80, 137]. 

 

Рисунок 2.4 – Кусково-лінійна діаграма    поведінки матеріалу 

в точці при одноосному розтягуванні 

Пряме використання моделі з деформаційним розм’якшенням в 

класичному континуумі призводить до погано обумовленої проблеми. Як 

тільки виникає деформаційне розм’якшення, рівняння руху втрачають 

гіперболічність і стають еліптичними. Фактично, об’єм тіла поділяється на 

частину, в якій хвилі мають уявні хвильові швидкості, і не поширюються 
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повільні хвилі, і частину – із хвилями, що поширюються. Гранична задача стає 

погано обумовленою і не може служити належним описом базової фізичної 

проблеми. Через неможливість поширення повільних хвиль зона локалізації 

обмежується лінією нульової товщини (або дискретною площиною в 

тривимірному континуумі). У цих зонах локалізації відбувається фіктивне 

відображення хвиль з нульовою товщиною, і енергія, що витрачається в зонах 

локалізації, є нульовою.  

У цілому ряді експериментальних робіт показано, що поведінка матеріалу 

на майданчику плинності є нестійкою [6], причому втрата стійкості 

відбувається в результаті «стрибка» з пружного стану (точка A) у стан 

зміцнення (точка D). Відомо, що в результаті такої втрати стійкості і 

з'являються локалізовані смуги зсуву Людерса.  

Явище локалізації докладно вивчалося в цілому ряді теоретичних і 

експериментальних робіт [48, 113, 114]. Однак, проблема локалізації пластичної 

деформації при однорідному напруженому стані вивчена недостатньо.  

Постановка задачі. Розглянуто процес одноосьового розтягу стержня 

довжиною L (рис. 2.5) [7]. Матеріал стрижня має «пік-зуб» на діаграмі 

напружень-деформацій. Нехай спочатку стрижень знаходився в попередньо-

напруженому стані, кожна точка стрижня знаходиться на межі пружності 

( ,E T     ). 

 

Рисунок 2.5 – Одновимірний стрижень під дією розтягувальних зусиль  

При довантажуванні стрижня весь матеріал не може перейти в 

пластичний стан одночасно у зв'язку з наявністю ділянки розм’якшення. 
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Перехід в пластичний стан станеться в деякій області, яка почне рух по 

матеріалу уздовж стрижня з певною швидкістю V, значення якої є 

характеристикою матеріалу і не залежить від умов навантаження стрижня. У 

стрижні утворюються три чітко виражені області: 1) область пружного стану, 

де 
E  ; 2) область пластичного стану, 

T  ; 3) область локалізації 

ширини δ, яка забезпечує розрив між пружним і пластичним станом. У 

масштабі всього зразка це призводить до відмінності діаграми для реального 

зразка від діаграми матеріалу.  

Параметри локалізації, такі як ширина ділянки δ і швидкість руху  

границі VL, залежать від мікроструктури матеріалу і визначаються 

експериментально [83, 115]. Напружено-деформований стан стрижня 

визначається шляхом формулювання співвідношення стану окремо для пружної 

та пластичної областей, а також завдання граничних умов для області 

локалізації з урахуванням того, що її границі рухомі.  

Умови для пружної та пластичної областей:  

    0 0

, ,

, , , ,

1 1
0, 0,

T T

el el L

tt xx tt xx

x x t x x t

u Eu u Hu

   

     

 

 
  
  

      
 
    
  

  (2.11) 

де   – щільність матеріалу, 
L  – деформація Людерса,  0x t  – координата 

локалізованої ділянки в момент часу t , E  – пружний модуль для області 

пружності, H  – пластичний модуль для пластичної області. Початкові умови 

для стрижня:  

 
 

 

,0 0,

,0 0.

u x

u x




  (2.12) 

Умови для напружень та переміщень на границях стрижня в моменти часу до 
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початку навантаження ( 0t  ) та після прикладення навантажень ( 0t  ):  

 

 

 

  0

0, 0, 0,

, 0, 0,

, , 0.

u t t

L t t

L t q t





 

 

 

  (2.13) 

На ділянці локалізації задається обмеження для поля деформації 
p

loc :  

 0 .p

loc L     (2.14) 

Умови на границях ділянки локалізації: 

 
 

 

0

0

, ,

, .

el

el L

x x t

x x t

  

  

  

  
  (2.15) 

Розглянуті експериментальні приклади (рис. 1.7) описували область 

пластичності, що рухається уздовж зразка в одному напрямку з постійною 

швидкістю. Тому має фізичний сенс шукати розв’язок задачі у вигляді 

хвильового рівняння для пружної та пластичної областей:  

 2

1
0, 1,2,tt xx

k

u u k
c

     (2.16) 

де 1k   відповідає пружній хвилі, а 2k   – пластичній хвилі, 
kc  – швидкість 

хвилі у пружній та пластичній областях відповідно. Розв'язки цих рівнянь 

складаються з двох функцій 
kf  і 

kg : 

      , , 1,2,k k k k ku x t f x c t g x c t k       (2.17) 

де 
kf  – функція напівхвиль, які поширюються вліво, а 

kg  – функція відбитих 

напівхвиль. Виконаємо заміну змінних:  
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  , , 1,2.k k k

k k

L x L x
u x t f t g t k

c c

    
       

   
  (2.18) 

Розв’язок для 
kf  при заданих граничних умовах має вигляд:  

   
  

  0 , 1,2,
k

k k k

k

h t L x c
f t L x c q t L x c k

c

 
        (2.19) 

де  h t  – функція Гевісайда: 

 

 
1 0,

0 0.

при x
h x

при x


 

   

Розв’язок для 
kg  доповнює розв’язок для поля переміщень:  

 

 
  

  

  
  

0

0

,

, 1,2.

k

k k

k

k

k

k

h t L x c
u x t q t L x c

c

h t L x c
q t L x c k

c





 
   

 
   

  (2.20) 

Поле деформацій du dx   має вигляд:  

  
     0 0

, , 1,2,
el el

k

k k

q h t L x c q h t L x c
x t k

E E


   
     (2.21) 

де 
kE  – модуль пружності E для пружної області і пластичний модуль H для 

області пластичності.  

Якщо плинність починається після проходу відбитої хвилі, то непружна 

поведінка області локалізації δ визначена [48, 87, 118, 119]. Рівняння стану стає 

еліптичним, це означає, що зона локалізації не збільшується і залишається 

нескінченно малою ( 0  ). Введемо умову для переміщень в області 

локалізації: 
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     0 0, , .p p Lx u x t x x x x          (2.22) 

Для решти стержня, що складається із пружної та пластичної областей 

отримаємо: 

 
  

     0, , 1,2,
k

k k k k

k

h t L x c
u x t q t L x c g t L x c k

c

 
         (2.23) 

де вираз для відбитої хвилі 
kg  (

1g  для пружної і 
2g  для пластичної областей) 

залишаються невідомими. 

Фізичні хвильові процеси у зразку зображені на діаграмі на рис. 2.6. 

 

Рисунок 2.6 – Поширення області локалізації під дією пружної хвилі  

Суцільна наклонна лінія внизу відображає довжину зразка L  в момент 

часу t . Точковою лінією, яка починається з 0 зображено положення фронту 

пластичної локалізації 
Lx . Процес переходу зразка в пластичний стан 

починається в момент часу 0t  , і продовжується, поки весь зразок не перейде у 

пластичний стан, чому відповідає перетин суцільної лінії  L t  з пунктирною 

лінією  Lx t . Штрихованими лініями зі стрілками позначені хвилі, які в 

пластичній і в пружній областях мають різні швидкості, і, отже, різний кут 
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нахилу на діаграмі. Хвилі відбиваються від границь зразка (вісь t  для 

закріпленого краю та  L t  для краю, до якого прикладені зовнішні 

навантаження). Таким чином, відбувається «преломлення» хвилі на границі 

муж пружною та пластичною областю  Lx t , яке спричинене різницею між 

швдкостями хвилі у стані пружності і пластичності. 

Поля деформацій приймають вигляд:

  
  

  
0 1

, , 1,2.
k k

k

k k k

q h t L x c dg
x t k

E c d t L x c


 
  

 
  (2.24) 

Таким чином, були визначені умови в усіх областях стрижня. Для 

розв'язку поставленої задачі необхідно використовувати узгодженість полів 

напружень і деформацій на границях області локалізації. Використовуючи  

умови (2.22) і (2.23), а також беручи до уваги умову узгодженості полів 

деформації на границі пружної і локалізованої областей, отримаємо вираз для 

допустимого стрибка на границях локалізованої області: 

  0 ,L     (2.25) 

або для виразу похідної функції напружень за деформаціями: 

 0 ,E H




 
    

  (2.26) 

де квадратні дужки позначають стрибок значення при переході через границю 

області локалізації:   p ex x x  , де px  та 
ex  – значення параметру у пластичній 

та пружній області відповідно. Співвідношення для стрибка по напруженням і 

деформаціям має вигляд: 

    LV    або  2 1 2 1LV       .  (2.27) 

З експериментальних досліджень [123, 124, 126] відомо, що швидкість руху 
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фронту локалізації 0LV  , і, отже, має місце стрибок в полі деформацій. 

Швидкість руху фронту локалізації 
LV  у співвідношенні (2.27) є невідомою. 

Для її визначення необхідно врахувати рівняння руху: 

  2 1

1
.L

LV
     (2.28) 

Якщо задати швидкість 
LV , можна визначити стрибок поля напружень. 

Невідома швидкість може бути визначена за допомогою експериментальних 

досліджень. Наприклад, для одного з сортів м’якої сталі (сталь-25) вона 

дорівнює 10
-5

 м/с [83]. З іншого боку, можна отримати оцінки цієї швидкості, 

виходячи з наступних міркувань. 

При переході пластичної хвилі через локалізовану область відбувається 

«вирівнювання» напружено-деформованого стану в локалізованій  

області   (рис. 2.5). 

Таким чином, отримаємо що в тілі відбуваються наступні процеси: 

 Область A стає частиною пластичної області, в той же час область B 

ширини δ на пружній ділянці стає новою областю локалізації. Вирівнювання 

стану в області A відбувається за час ' Lt V . Приріст області B також 

відбувається за час 't . 

 На переміщення локалізованої області потрібен час 
0 't t . За цей же 

час поздовжня хвиля проходить відстань, що дорівнює довжині стрижня, тобто 

0 1t L c . 

З урахуванням цих двох пунктів та (2.27), отримаємо співвідношення: 

 
1

1
.

2

LLV

c
   (2.29) 

Ця формула співпадає з відомими емпіричними співвідношенням [42, 63]. 

Проведена оцінка дає підстави вважати, що запропонована модель пластичної 

течії дозволяє описати уривчастість пластичної течії матеріалу з майданчиком 
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плинності при жорсткому навантаженні. 

2.4. Розвиток лінії ковзання з постійною швидкістю 

У ряді експериментів показано, як розвиток смуг локалізації в тілі під 

дією навантаження відбувається в стані плинності [15-19, 83, 86, 104]. В 

експериментальних роботах [60, 81, 82, 83] показано, що смуга локалізації 

поширюється в тілі з постійною швидкістю V. У той же час, в моделях 

пластичної деформації [1-3, 44-46, 60, 104] не визначено цю швидкість і не 

надано жодного фізичного пояснення цьому процесу. Лише в роботі [48] 

подано оцінку швидкості, отриману з аналітичного розв'язку. Проте такий 

розв'язок не описує поведінку більшості матеріалів, оскільки він побудований 

на гіпотезі про наявність на діаграмі напружень-деформацій матеріалу лише 

пружного стану і стану зміцнення. 

У сталі та сплавах, а також ряді інших матеріалів, що використовуються 

на практиці, смуга локалізації розвивається у вигляді смуги зсуву між 

структурними шарами (шарами атомів в кристалічній решітці, шарами зерен 

та ін.) [26]. Існує ряд властивостей, які зближують лінію локалізації з процесом 

утворення тріщини II типу [51]: наявність стрибка поперечних переміщень v , 

що діють на береги тріщини і смуги локалізації дотичних напружень [97, 122]. 

Однак лінія локалізації має ряд особливих відмінностей, таких як збереження 

геометричної цілісності зразка та можливість «заліковування», тобто 

повернення пружної частини деформацій до нуля при зменшенні навантажень. 

Розв'язок задачі динаміки сталого процесу руху тріщини описаний в [88, 

92, 96, 121, 127]. У той же час, оригінальний розв'язок [127] описує тріщину I 

типу і процес заліковування в цьому випадку не має фізичного сенсу. 

У даній роботі розглянуто лінію ковзання постійної довжини, що 

рухається з постійною швидкістю в нескінченному тілі. В цій моделі прийнято 

припущення про те, що зсув смуги відбувається в вершині, а закриття 

(«загоєння») [54, 127] – на іншому кінці. Отриманий розв'язок виявляє 

особливості, властиві рухомим дислокаціям, і дозволяє надати фізичне 
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пояснення процесам, що відбуваються. 

Для моделювання механізму розвитку смуг Людерса у м'якій сталі, яка 

складається з фериту з включеннями істотно більш міцного перліту [60,66], 

розглядається зсув   двох сусідніх зерен перліту і фериту під дією зсувного 

зусилля T . Якщо прийняти в зерні фериту модель пружно-пластичної 

поведінки, а в зерні перліту – модель крихкого руйнування, то можна 

охарактеризувати залежність дотичного напруження   ( T  ) від деформації 

зсуву   ( /   ) між двома зернами залежністю, яка узагальнює модель 

Новожилова [104] утворення тріщини в пружному тілі: 

         0/ exp / 1 / 1 exp / ,C C C CG a                  (2.30) 

де 
C  – деформація на межі міцності на зсув: 

       0exp 1 1 1 exp 1 .C G a           (2.31) 

Перший доданок у формулі (2.30) відповідає руйнуванню зерна перліту, а 

другий доданок – пружно-пластичній деформації фериту. 

Із закону (2.30) випливає, що система 2-х зерен при 
C m    , де 

m  – 

мінімальні напруження, може перебувати в трьох рівноважних станах, що 

відповідають значенням   рівним 
1 2, , L   . Стан

1   відповідає висхідній 

ділянці, 
2   – низхідній ділянці, а 

L   – стану зміцнення. При цьому 

положення рівноваги 
2   нестійке, а два інших положення рівноваги – 

стійкі. Пара зерен, що опинилася в стані взаємодії за законом спадної ділянки 

кривої   , неминуче перейде у взаємодію за законом ділянки зміцнення 

L  . Якби всі пари зерен двох суміжних шарів, що перетинають тіло, 

виявилися в такому стані, то воно перейшло б у стан ідеальної пластичності. Зі 

сказаного випливає, що в пружному тілі, що знаходиться в стані стійкої 

рівноважної деформації, взаємодія по закону спадної ділянки кривої    може 

існувати тільки локально. Внаслідок цього про подібні ділянки можна говорити 
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як про лінії розриву переміщень в суцільному тілі або про лінії ковзання. 

Навколо цих ліній всі зерна знаходяться в стані стійкої взаємодії по закону 

висхідної гілки кривої   , відповідно до чого розрив переміщень відсутній. 

При теоретичному дослідженні рівноважних деформацій пружно-

пластичних тіл завжди можна трактувати тіло як суцільне середовище, 

використовуючи методи теорії пластичності. Проте, можна врахувати не лише 

форми рівноваги, коли всі зерна взаємодіють за законом висхідної (стійкої) 

гілки кривої   , але і такі форми, коли в тілі виникають розриви переміщень, 

між берегами ліній локалізації здійснюється взаємодія за законом спадної гілки 

кривої    (рис. 2.7). 

 

Рисунок 2.7 – Залежність   , побудована на підставі формули (2.30) 

Форма і розміри цих розривів заздалегідь невідомі. Вони можуть бути 

визначені з рівнянь теорії пружності при завданні на берегах кожної лінії 

локалізації відповідних граничних умов, що випливають із закону (2.30) при 

C  . 

Строга постановка і розв’язання цієї нелінійної задачі представляють 

певні труднощі, через що сформулюємо наближений підхід на основі 
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наступних спрощувальних припущень:  

1) співвідношення між напруженнями і деформаціями на висхідній 

(стійкій) ділянці кривої (
L  ), тобто у всій області тіла, де зберігається його 

суцільність, відповідає закону Гука;  

2) рівняння рівноваги і формули, що зв'язують деформації з 

переміщеннями, приймаються в лінійній формі, тобто задача трактується як 

геометрично лінійна;  

3) низхідна ділянка залежності    апроксимується в найпростішому 

варіанті:  

     1 * * *, , 0 ,C Ch             (2.32) 

де  h x  – функція Гевісайда. 

Постійна 
1  може бути обрана з міркувань найкращої апроксимації кривої 

   при 
C  . Визначимо 

1  з умови  

  
1 ,C u    (2.33) 

при цьому площа, обмежена апроксимуючою кривою      і прямою 
m   

на інтервалі 
1C     має дорівнювати площі, яка обмежена  

кривою      і прямою 
m   на інтервалі 

1 L     (рис. 2.7). Ця умова 

рівносильна вимозі, щоб апроксимуюча залежність давала те саме значення 

щільності поверхневої енергії. Прийняті спрощення призводять до лінеаризації 

всіх рівнянь і дають можливість отримати наближений її розв’язок.  

Представлена модель утворення лінії ковзання нагадує модель руху 

дислокації, коли «квантом» пластичного зсуву є зміщення дислокації на 

відстань, яка дорівнює довжині вектора Бюргерса 
0b . У даній моделі для 

полікристалічного матеріалу прийнято, що пластична деформація розвивається 

за рахунок пластичних зрушень окремих зерен (кристалітів) і «квантом» 

пластичної деформації в цьому випадку є зсув в межах пари зерен  .  
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2.5. Механічна модель пластичної деформації з урахуванням плинності в 

одновимірному випадку 

Постановка задачі. Розглядається призматичний стрижень під дією 

поздовжніх розтягувальних зусиль, в якому виникає одна або декілька областей 

з неоднорідною деформацією (рис. 2.5, с. 47). Необхідно описати процес 

виникнення і розвитку локалізованої області в коли матеріал досягає 

напружено-деформованого стану на майданчику плинності. 

Метод розв’язування. Як вже було вказано у вступі, класичні моделі 

пластичності, які зазвичай використовуються в більшості технічних 

імплементацій, засновані на припущенні, що напруження в певній матеріальній 

точці однозначно визначається історією розвитку деформації, тобто має місце 

градієнт переміщень першого порядку. Окремі матеріальні точки, як 

передбачається, взаємодіють тільки зі своїми безпосередніми сусідами, 

причому таким чином, що міра механічної взаємодії повністю описується 

симетричним тензором напружень. Взаємодія на кінцевій відстані 

виключається (крім діючих зовнішніх масових сил), так само як виключається 

залежність поля зсуву від градієнтів другого і більш високого порядків. У 

визначальних рівняннях залежність пластичної деформації від історії 

деформації зазвичай замінюється залежністю від поточної величини деформації 

і внутрішніх змінних, але ця залежність є строго локальною, і градієнти 

внутрішніх змінних полів не беруться до уваги. Те ж саме стосується рівнянь 

еволюції, які визначають швидкості внутрішніх змінних. 

Визначальні моделі, сформульовані в рамках класичного уявлення про 

структуру простих неполярних матеріалів, не включають масштаб відстаней, 

який свідчив би про типовий розмір і інтервал характерних мікроструктур. 

Тому такі моделі, по суті, не можуть описати ефекти, які спостерігаються 

експериментально, наприклад, локалізацію деформації при розм’якшенні або 

при неасоційованих течіях в матеріалі. 

Вирішення цих питань стало можливим при введенні інформації про 

матеріальну неоднорідність на мезо- або мікрорівнях. Приклади такого 
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збагачення включають додаткові кінематичні змінні (наприклад, кути повороту 

в теорії Косера), просторові середні значення, градієнти вищого порядку. 

Модель поведінки матеріалу з урахуванням неоднорідностей. 

Розглянемо механічну модель матеріалу, що представляє із себе ланцюг 

довжини L  що складається з N  матеріальних точок, з'єднаних послідовно 

пружними пружинами, рівноважної довжини 
1

L
h

N



, які мають 

жорсткість k  (рис. 2.8). 

Рівноважні координати матеріальних точок будуть 0

ix hi , 1, 1i N  . 

Положення i-ї точки є функцією часу:    0

i i iX t x x t  , де  ix t  – зміщення i-ї 

точки відносно свого рівноважного положення. Відстань між точками i та i+1 

позначимо як 
, 1i il 

. 

 

Рисунок 2.8 – Механічна модель матеріалу 

Вважаючи тип взаємодії між точками центральним, покладемо, що на 

точку діють тільки сили пружних зв'язків пружин зліва iF 
 і справа iF 

, а сила 

зв’язку пружини F  між сусідніми точками задається у вигляді: 

 
, 1 1( , ),i i i iF kl g x x    

де 
1( , )i ig x x 

 – деяка функція. Тоді Рівняння руху i-ї точки набудуть вигляду: 

        

   

1 1 1 1 1 1

1 1 1 1

, ,

2 , .

i i i

i i i i i i i i

i i i i i

mx F F

k x x g x x k x x g x x

k x x x g x x

 

     

   

  

     

  

  (2.34) 

Отримане рівняння руху може бути зведене до диференціального 

рівняння руху відносно безперервних функцій координат і часу, причому 
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розв’язком такого рівняння буде сімейство хвильових функцій. Функція g має 

бути підібрана таким чином, щоб у кінцевому рахунку забезпечити 

періодичність рівняння руху. У цій роботі функція g прийнята у формі 

   1 1
1 1, 1 tg .

2

i i
i i

x x
g x x

h
  

 


    (2.35) 

Відповідно, рівняння руху (2.34) набуває вигляду: 

    1 1
1 12 1 tg .

2

i i
i i i i

x x
mx k x x x

h
  

 

 
    

 
  (2.36) 

Виконаємо заміну коефіцієнтів в рівнянні (2.36). Для цього введемо зведену 

щільність 3m h  , зведений модуль пружності k  , швидкість хвилі в 

системі v   . Після перетворення підстановки в (2.36), отримаємо: 

  
2

1 1
1 12

2 1 tg .
2

i i
i i i i

v x x
x x x x

h h
  

 

 
    

 
  (2.37) 

Перейдемо до безперервної моделі. Для цього потрібно виконати 

граничний перехід від дискретної функції координати окремої частки до 

функції переміщення. Введемо безперервну на всій області визначення 

 0,x L  функцію  ,u x t , що виражає зміщення ланцюга у точці x в момент 

часу t. При цьому справедлива тотожність    0 0,i i iu x t x t x  . Співмножники в 

правій частині рівняння (2.37) перетворимо згідно з теоремою Тейлора як 

різницеві вирази для похідних. Підставивши ці вирази в (2.37) і залишаючи 

доданки зі співмножниками при ступенях h і h
2
, отримаємо диференціальне 

рівняння руху відносно  ,u x t : 

  2

2

1
1 2tg 2 tg .tt xx xu u u x u x

v
     
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Розв’язок цього рівняння має вигляд одиночної хвилі, що має наступний 

вигляд в термінах функції    , ,xx t u x t  : 

  0 0
0 2

0

1 1 1
, sin 1 arctg .

2
1

x x x x
x t B vt

l lx x
vt

l

 


 
 

                 
   
     

На рис. 2.9 представлена еволюція профілю функції при послідовних 

значеннях 0...0,3t с . Фронт хвилі розвитку пластичної області при переміщені 

вправо залишає зліва від себе періодичне поле деформацій. 

 

Рисунок 2.9 – Розвиток профілю функції ε(x,t) при t=0..0,3 с 

Прийнявши, що фронт хвилі розповсюджується нескінченно далеко, при 

T   отримаємо вид усталеного періодичного поля деформацій: 

   0, sin .
x x

x t A
l




  

Таким чином, увівши до одновимірної механічної моделі нелінійну 
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взаємодію спеціального виду, можна отримати систему, в якій переміщення і 

деформації будуть описуватися періодичними функціями. Такий підхід 

дозволяє пов'язувати безпосередньо виміряні в експерименті значення 

швидкості хвилі і періоду смуг локалізації для опису процесу деформування. 

Однак, він повною мірою може бути застосований лише для обмеженого об’єму 

матеріалу. 

2.6. Періодична система смуг локалізації 

Розглянемо окремо випадок виникнення періодичних смуг локалізації, що 

відповідає експериментальним даним. Для цього можна застосувати теорії 

пластичності, що розглядаються в роботах [39, 40, 98, 125]. Умова зміцнення 

теорії пластичності в [40] задається у вигляді співвідношення, що включає 

похідні 

   ,s f c      

де s  та   – інваріантні змінні відповідно напружень і деформацій,  f   – 

вираз для напружень відповідно до теорії ідеальної пластичності, коефіцієнт c  

визначає неоднорідність (або нелокальність) механізмів пластичності. В деяких 

додаткових змінних можна, наприклад, ввести швидкість деформації   у якості 

додаткового параметру функції f : 

  , .s f c       

Інше узагальнення полягає у тому, щоб ввести градієнти вищих порядків до 

умови зміцнення: 

  , ,s f c c            

де c  – ще один коефіцієнт стану пластичності. Однак, для того щоб отримані 

співвідношення могли легко використовуватися при порівнянні з 

експериментальними даними, будемо вводити умови зміцнення з найменшою 
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кількістю додаткових коефіцієнтів. 

Розглянемо типову задачу одновимірної деформації стрижня постійного 

поперечного перерізу (рис. 2.2, с. 43). Стрижень жорстко закріплено на одному 

кінці, а до іншого кінця застосовується жорстке закріплення із заданим 

переміщенням. Основні рівняння стандартної одновимірної пластичності з 

ізотропним зміцненням в локалізованій області матимуть вигляд: 

 
 

0

,

,

P

Y P

E

H

  

  

 

 
  (2.38) 

де 
0  – початкова межа плинності, 

Y  – поточне напруження плинності,   – 

повна деформація, 
P  – пластична деформація, H  – модуль пластичності, 

причому у випадку розм’якшення 0H  . Функція плинності має вигляд: 

  , .Y Yf        

Вже згадувалося, що поява локалізованої ділянки розвитку пластичної 

деформації (і, як наслідок, ділянка втрати стійкості) може відбуватись за 

рахунок утворення смуг локалізації (рис. 2.2). Наявність області локалізації у 

макромасштабі можна ототожнити з появою в тілі пластичного шарніра. Для 

виконання умов рівноваги в шарнірі з’являються нові доданки, пропорційні 

похідним вищого порядку від переміщень. Таким чином, може бути 

застосована модель пластичності, що описується в [132]. Згідно з цією моделлю 

закон розм’якшення (2.38) доповнюється доданком, пропорційним другому 

градієнту змінної розм’якшення. Для одновимірної моделі з лінійним 

розм’якшенням цей закон записується наступним чином: 

  2

0 ,xx

Y P PH l        (2.39) 

де l  – матеріальний параметр, що має розмірність довжини. 

Обмежимо розгляд моделей випадком пластичної течії в області 
Px L , 

яка займає не весь об’єм тіла (бо розглядається процес переходу у повністю 



64 

пластичний стан). Зазначимо, що при цьому область локалізації може мати 

розриви. 

На початку розвитку стану пластичності в тілі функція плинності 

обертається в нуль. Таким чином, поточні напруження пластичності 

залишаються постійними уздовж всього зразка через умови рівноваги: 

  0Y x   (окрім області, де відбувається процес переходу через пік-зуб). 

Об’єднуючи ці спостереження з умовою (2.38) в області 
Px L , отримаємо 

нелінійне диференційне рівняння відносно 
P : 

 2 2

1 1
, ,xx

P P P Px L
l l

       (2.40) 

де 
0

P
H

  



  – константа, що характеризує процес навантаження. Причому 

наявність другої похідної xx

p  в законі розм’якшення запобігає локалізації 

процесів пластичності у нескінченно малій області. 

Загальний розв’язок рівняння (2.40) має вигляд: 

 
0 0sin cos ,P P

x x x x
A B

l l

 
 

     (2.41) 

де ,A B  – константи інтегрування, 
0x  – точка відліку в пластичній області. 

Раніше було показано, що в області 
Px L  має місце умова 0P  , а на краях 

області 0P  . 

Враховуючи, що функція 
P  є неперервною, а отже, в області 

Px L  має 

існувати точка, в якій значення 
P  набуває екстремуму. Враховуючі це, а також 

вигляд розв’язку (2.41) як суми періодичних функцій, можна вимагати 

виконання співвідношення  0 0x

P x  . Таким чином, (2.41) спрощується, бо 

0A , і можна записати остаточний розв’язок тільки з однією константою 

інтегрування B : 
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0cos .P P

x x
B

l

 


    (2.42) 

Із цього розв’язку випливає, що область локалізації має довжину 2PL l , 

тобто набуває фізичного сенсу параметр l , що має розмірність довжини. 

Відзначимо, що розмір області локалізації не залежить від інших параметрів 

матеріалу, включаючи модуль пластичності H . Приймемо для симетрії, що 

центр області локалізації знаходиться в точці 
0x . Розподіл пластичної 

деформації згідно розв’язку (2.42) в області 
PL  зображено на рис. 2.10. 

 

Рисунок 2.10 – Профіль функції пластичності в області локалізації 

Пластична деформація в межах смуги локалізації обмежена величиною 

деформації на майданчику плинності. У загальному випадку пластична область 

може складатись з кількох смуг локалізації. Враховуючи, що розв’язок (2.42) 

періодичний, в силу довільності 
0x  і заздалегідь невідомого розміру пластичної 

області 
PL , можна розширити періодичну функцію  P x  на всю пластичну 

область, як показано на рис. 2.11. Враховуючи періодичність розв’язку (2.42), 

можна зазначити, що при досягнені матеріалом пластичного стану пластична 

область у зразку розпадається на кілька підобластей, які визначаються 

екстремумами функції 
P  [10]. Таким чином, введення до рівняння плинності 

параметру l  з розмірністю довжини дозволяє описати випадок періодичних 

пластичних деформацій у тілі. 
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Рисунок 2.11 – Розподілення майданчику плинності на відрізки 
l  довжини, 

що відповідають окремим областям локалізації 

Однак, якщо пластична деформація розвивається, і відстань між 

періодичними структурами в тілі збільшується, то вже не можна 

використовувати періодичний розв’язок (2.42). 

Для узагальнення розв’язку (2.42) на всю систему періодичних смуг 

локалізації, загальне поле пластичної деформації  ,P Px x L   може бути 

записане як суперпозиція кількох розв’язків для окремої смуги: 

    .P p

i

x x i      

Цей випадок зображено на рис. 2.12, де показана періодична функція 

пластичної деформації  P x , кожен локальний пік якої відповідає одній смузі 

локалізації, а функція в цілому – всій системі смуг локалізації. 

 

Рисунок 2.12 – Періодична функція пластичності у випадку системи смуг 

локалізації 
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Висновки до розділу 2 

1. Проведена оцінка теорії пластичності з комбінованим зміцненням дає 

підстави вважати її адекватною та цілком придатною для опису такого 

фізичного явища, як уривчастість пластичної течії матеріалу з майданчиком 

плинності при жорсткому навантаженні.  

2. Було розглянуто особливості поведінки деяких промислових 

матеріалів, таких як метали, полімери, ґрунти, бетон і скельні гірські породи, 

які при певних умовах розм’якшуються. Було окремо приділено увагу поведінці 

матеріалів, в яких присутня як ділянка розм’якшення, так і зміцнення 

(матеріали з піком-зубом). Було враховано, що розм’якшення після досягнення 

критичного навантаження призводить до того, що деформація локалізується у 

вузьких смугах, які часто є попередниками руйнування. 

3. В описаній моделі поведінки матеріалів було виявлено, що як тільки 

виникає деформаційне розм’якшення, об’єм тіла поділяється на частину, в якій 

хвилі мають уявні швидкості, тобто де повільні хвилі не поширюються, і 

частину – із хвилями, що поширюються. Через неможливість поширення 

повільних хвиль зона локалізації обмежується лінією нульової товщини (або 

дискретною площиною в тривимірному континуумі). У цих зонах локалізації 

відбувається фіктивне відображення хвиль з нульовою товщиною, і енергія, що 

витрачається в зонах локалізації, є нульовою.  
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РОЗДІЛ 3.  ЛОКАЛІЗАЦІЯ ПЛАСТИЧНОЇ ДЕФОРМАЦІЇ У ВИГЛЯДІ 

СМУГ. ЗАДАЧА ЙОФФЕ 

3.1. Опис задачі Йоффе  

У задачі Йоффе [51, 52, 127] розглядається поширення спеціального виду 

тріщин, що можуть закриватись, в окремих матеріалах, таких як смоли на 

пластики. Через деякі аналогії з лінією пластичної деформації було прийнято 

рішення про розгляд процесів пластичності за допомогою цієї моделі. При 

розгляді полоси локалізації також має сенс вважати, що закриття тріщин, яке 

може мати місце в полімерах, відповідає можливості обернення пружної частки 

деформацій, а розриви переміщень на берегах тріщини відповідають розривам 

на берегах лінії локалізації. 

В початковій постановці задачі Йоффе вивчається тріщина постійної 

довжини, що рухається з постійною швидкістю в нескінченному твердому тілі. 

Таким чином, тріщина має одну передню кромку, де відбувається процес 

відривання, і один хвіст, де відбувається процес загоєння. Розв’язок описує 

більшість особливостей, що стосуються рухомих тріщин взагалі. Це буде 

показано тут для тріщини II типу, тоді як оригінальний розв’язок Йоффе 

стосувався тріщин I типу. Рух тріщини II типу з постійною довжиною 

наближається до фізичних процесів, оскільки загоєння у тріщині I типу не є 

спонтанним фізичним процесом. Для тріщин II і III типу, які зазвичай мають 

місце при сейсмічних подіях, загоєння просто означає припинення ковзання 

берегів тріщини. Хоча цей процес не є унікальним, оскільки обмін енергією з 

навколишнім середовищем в околі тріщини може змінюватися в залежності від 

матеріалу. Процес загоєння відрізняється від процесу розриву тим, що він 

супроводжується віддачею енергії, а не розсіюванням. Однак, кількість 

випромінюваної енергії набагато менша, ніж енергія, розсіяна на передній 

кромці, і для простоти будемо вважати, що вона є незначною, і тоді процес 

загоєння стає однозначно визначеним.  
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3.2. Постановка задачі Йоффе для тріщини II типу  

Розглянемо лінію зсуву a x Vt a    , що рухається із постійною 

швидкістю V  у додатному напрямку x  уздовж 0y   (рис. 3.1). Розглядається 

плоский напружений стан та плоский деформований стан. Навантаження на 

нескінченності складаються із дотичних напружень xy xy   , а також у 

загальному випадку нормальних напружень y y   , але у даному випадку 

будемо вважати, що нормальні та дотичні напруження на нескінченості 

відсутні. Також вважається, що тертя між берегами лінії зсуву відсутнє.  

 

Рисунок 3.1 – Задача Йоффе для розвитку лінії зсуву 

Через те, що зсув відбувається між початковим за кінцевим краями, 

скінченна кількість смуг зсуву буде розподілена уздовж 0y   для x Vt a  . 

Таким чином, дві суміжні частинки, що розташовані на кожному краю площини 

0y   та були у контакті перед прибуттям початкового та кінцевого країв, 

будуть зміщені на відстань 2  одна від одної після проходження полоси зсуву. 

Приймаємо, що   є постійною величиною на x Vt a  , 0y  .  

Надалі буде прийнято, що 
sV c . Таким чином швидкість переміщення 

тріщини буде дозвуковою. Важливість цього припущення стане очевидною, 
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коли будуть розглядатися тріщини із швидкостями між швидкістю S-хвилі 
sc  та 

швидкістю P-хвилі pc . 

Розглядаючи напівнескінченне тіло 0y  , отримаємо змішану граничну 

задачу. Граничні умови для 0y   будуть наступними: 

  0y   для всіх x ,  

  0для ,xy x Vt a      

  0для .
u

x Vt a
x


  


  

3.3. Розв’язок задачі Йоффе для лінійного навантаження, що 

переміщується 

Розв’яжемо спочатку просту граничну задачу: зсувні  

напруження ( )xy T x Vt    рухаються із постійною швидкістю V  у додатному 

напрямку x  по площині 0y   у напівнескінченному тілі 0y  . Необхідно 

знайти переміщення u  (або градієнт /u x  , якщо це простіше) по площині, в 

якій іде розвиток смуги.  

Функції потенціалів переміщень ( , )x Vt y   і ( , )x Vt y   будуть 

використовуватись для представлень [53]: 

  ,u
x y

  
 
 

 (3.1) 

  ,v
y x

  
 
 

 (3.2) 

 
2 2 2

2 2

2 2 2
(1 2 ) 2 ,x k k

k x y x y

   


   
    

    
 (3.3) 

  
2 2 2

2 2

2 2 2
(1 2 ) 2 ,y k k

k x y x y

   


   
    

    
 (3.4) 

  
2 2 2

2 2
2 .xy

x y x y

  
 

   
   

    
 (3.5) 
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Далі застосовуються перетворення Галілея X x Vt  , Y y , тобто 

перехід до системи координат, пов’язаної із точкою прикладання навантажень. 

Співвідношення (3.1)-(3.5) потребують лише заміни x X  і y Y , у той час 

коли рівняння руху будуть мати вигляд [54]: 

  
2 2

2

2 2
0,Pa

X Y

  
 

 
  

  
2 2

2

2 2
0,Sa

X Y

  
 

 
  

де 

  21 , / , 0,P P Pa V c a       

  2 21 / , 0.S Sa k a     

Варто зазначити, що 
Pa  та 

Sa  пов’язані. 

Розв’язки рівнянь руху, що задовольняють умові неперервності за  

умови Y  , мають вигляд: 

  
0

( ) sinPa YA e Xd   



  , (3.6) 

  
0

( ) cosSa Y
C e Xd

   



  . (3.7) 

Після нескладних перетворень, граничні умови на 0Y   будуть мати вигляд: 

  2 2
, 0.xy y

T

X


 

 
 


  

Тимчасова заміна дельта-функції на функцію, що дорівнює дельта-функції при 

0  , робиться для уникнення незбіжного інтегралу під час розв’язання. 

Використовуючи представлення для напружень, граничні умови для 0Y   
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матимуть вигляд:  

  
2

2 2 2 2 2

0

{ [ (1 2 )] 2 }sin 0,y P

k
A a k k C Xd    





       

  2 2 2

2 2

0

1
{ 2 (1 )}cos .xy P S

T
Aa C a Xd

X


    

  



    
   

Обернення та спрощення дає: 

  
2(1 ) 2 0,S Sa A a C    

  2

2 2 2 2 2

0 0

1
{ (1 ) cos .xy P S

T T
a A a C XdX e

X


 

    

 

     
    

Ця система дозволяє знайти ( )A   та ( )C  : 

  
2 2 2

2
,

4 (1 )

S

P S S

T a e
A

a a a



 



 
 

 (3.8) 

  
2

2 2 2

1 2
.

4 (1 )

S

P S S

T a e
C

a a a



 


 

 
 (3.9) 

Підстановка у  

  2 2

0

[ ]sin , 0,S

u
A a C Xd Y

x
   




   

    

де нижній індекс + означає верхню напівплощину, дає: 

  
2

0

2 (1 )
sin , 0,

( , )

S S

P S

u T a a
e Xd Y

x R a a

  




 
 

   (3.10) 

разом із 
2 2( , ) 4 (1 )P S P S SR a a a a a    це одна із форм функції Релея, що 

підходить для усталеного стану. У [54] функція Релея  R   задана у 

наступному вигляді: 
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  3 2 2 2 2 2 2 4( ) 2 1 (2 ) ( , ).P SR k k k k R a a           

Функція Релея  R   досягає значення 
2 2 22 (1 )k k   при 0   та зникає при 

швидкості Релея 
Rc , що менша за швидкість S-хвиль [108]. За допомогою 

співвідношення  

  2

0.135
1 /

3 4
R Sc c

k
 


  

можна отримати 
Rc  із точністю ±0.5%.  

Інтеграл у (3.10) дорівнює 
2 2/X X  , таким чином, повернення до 

первинного прикладеного навантаження ( )xy T x Vt   , у припущенні 0  , 

дає: 

  
2

( ) 1
, 0, 0,

2(1 )

IIu T Y
X Y

x k X





   

 
  

де 

  
2 2 2 22

2 2 (1 )(1 )
( ) 2(1 ) ,

( , ) ( )

S S
II

P S

k k ka a
Y k

R a a R

 




 
     

нормалізується таким чином, що (0) 1IIY  .  

Функції потенціалів   і   не можуть бути визначені – інтеграли  

в (3.6) і (3.7) фактично не сходяться. Перевірка показує, що ці вирази 

використовувалися лише формально: використовувалися вторинні похідні   і 

 , які сходяться.  

Напруження, а також масові швидкості тепер можуть бути визначені 

навіть для точок поза віссю X. За допомогою (3.1), (3.2), (3.6), (3.7), (3.8) та (3.9)

виявлено, що масові швидкості / /u t V u x       і / /v t V v x       у верхній 

півплощині знаходяться як  
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4

0

1 2
( ),

( , )

S

P S

u T k a
u X

V x R a a

 


  

  
4

0

1 2
( ),

( , )

S

P S

v T k a
v X

V x R a a

 


  

де 

  
2

0 2 2 2 2 2 2

1
( ) ,

2

S

P S

X a X
u X

X a Y X a Y


 

 
  

  
2 2

0 2 2 2 2 2 2

1
( ) .

2

P S

P S

a X a X
v X

X a Y X a Y


 

 
  

Тут можна зауважити, що альтернативою потенціалам зсуву для 

розв'язків задач плоского динамічного стаціонарного стану є використання так 

званих рівнянь Снеддона-Радока [107, 120]. Вони, однак, є виключно 

спеціалізованими для проблем стійкого стану.  

3.4. Розв'язок задачі Йоффе для полоси зсуву 

Для переходу до задачі руху полоси зсуву на рис. 3.1, приймемо ряд 

припущень: 1) розкриття, на відміну від тріщини, тут не відбувається, тобто 

показано переміщення u, а не v; 2) прийняте енергонезалежне «заліковування» 

уздовж лінії, яке згладжує закриття на краях полоси. 

Задача руху смуги зсуву зведена до задачі Йоффе про напружено-

деформований стан полоси зсуву, помноженого на параметр  IIY  , що 

називається функцією Йоффе. Параметр   є відношенням швидкості 

поширення смуги зсуву до швидкості поширення пружної хвилі в матеріалі: 

EV c  . З принципу суперпозиції випливає, що реакція від дотичних 

напружень  0

xy xy x   на 0Y   визначається зі статичного розв'язку від впливу 

дотичних напружень  0

xy xy x  , помножених на  IIY  .  

Виходячи з представленої вище моделі, на поверхнях розриву деформацій 
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(тобто на берегах полоси зсуву, що відповідає берегам тріщини в оригінальній 

постановці задачі) маємо: 

  0.xy   (3.11) 

Оскільки рівняння залишаються незмінними, то розв’язок в нашому 

випадку може бути отримано безпосередньо з результатів задачі [96, 127] з 

проковзуванням. Таким чином, відомі розв’язки задачі для руху тріщини [96, 

127] змінюються на розв’язки для руху лінії локалізації: 

   0 0 ,xy xy

X a
для X a

X a
    

   


 (3.12) 

  
   

 
0

2
,

2 1

xy IIYu a X
для X a

x a Xk

  






 

 
 

 (3.13) 

  
   

 
0

2
.

2 1

xy IIaY

k

   




 



 (3.14) 

Тут використовується статичний розв'язок, отриманий Баренблаттом  

у [44-46], помножений на функцію Йоффе  IIY  , яка в даному випадку має 

вигляд: 

   
 

 

2 2 2 22 1
.II

k k k
Y

R

 




 
  (3.15) 

Модель придатна для опису як плоского напруженого стану, так і плоского 

деформованого стану. Тип моделі обумовлюється вибором параметра k, який 

визначається як відношення між швидкостями S- та P- хвиль:  

  
   

 
2

1 2 / 2 1 для плоского деформованого стану,

1 / 2 для плоского напруженого стану.
k

 



  
 


 (3.16) 
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У (3.15)  R   позначена функція Релея: 

       
2

3 2 2 2 2 2 44 1 2 , ,P SR k k k k R a a          (3.17) 

де 
Sa  та 

Pa  – безрозмірні параметри швидкості S- та P- хвилі у матеріалі 

відповідно: 

  21 , 0,P Pa a    (3.18) 

  2 21 / , 0.S Sa k a    (3.19) 

Для розглянутої задачі має місце рівність  

  

 

 
 

0

2 2 2

0 2
3 2 2 2 2 2

/ / /

/ 1 .
2 1 2

L L

xy

h a h a

k k

k k k

   

 
  

  



  


 

   

 (3.20) 

Із рівняння (3.12) випливає, що  

   02 .II xyK a     (3.21) 

Для полоси зсуву, яка повільно рухається, була використана модель 

області процесу Баренблатта [104] для тріщини розриву II типу. Отримані 

результати будуть використовуватися тут для динамічного дорелеєвського 

випадку [52,112]. Довжина полоси (включаючи область процесу Баренблатта) 

дорівнює 2a , і напруження зсуву на 0Y  :  

   
0

0

для ,

для ,

P

xy

xy P

a X a r

X a r X a






   
 

  
 (3.22) 

де 
Pr  – довжина області розвитку тріщини,  0

xy X  – значення з умови гладкого 
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закриття,  

  
 

 
0

0

0
2 2

1
.

P

a xy

xy
a r

d

a

   
  

 






 


  (3.23) 

Для динамічного дорелеєвського випадку використання результатів для 

статичного розв'язку [51, 92, 96, 127], який отриманий у припущенні про 

нульову енергію «заліковування» (щоб при цьому не розглядати процеси в 

хвості тріщини), дає: 

  

 

 

 

 

2 2

2 2

02 2
0

2 2
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X a X
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X a X

  
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   


  




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 

 

     
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 (3.24) 

   

 
 

 

02 2
0

2 2 2
,

2 1 P

a xyII

a r

a X Yu
для X a

x k a X

  

   





    
   

  (3.25) 

для 0Y  , та, якщо 
Pr a , ковзання на кожній стороні смуги буде: 

  
 

 2
.

22 1

II IIT Y a

k








 (3.26) 

Рівність (3.26) стає точною у граничному випадку при 0Pr a , і потім 

збігається з (3.13), оскільки 
IIT  – модуль зчеплення Баренблатта для тріщини II  

типу  

   0 2 .
2

II II xyT K a


      (3.27) 

Значення 
IIT , як і 

IIK  під час динамічного поширення тріщини залежить від   і, 

ймовірно, також від історії поширення смуги розриву переміщень [52]. 

Рівняння (3.27), показує, що довжина області ковзання: 
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 

2

2
2

0

2 ,II
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
 (3.28) 

і ковзання на краях тріщини: 
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II II
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
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 (3.29) 

Вирази (3.28) і (3.29) залежать від модуля зчеплення TII, перенапруження 

0xy    і швидкості. При повільному поширенні лінії ковзання довжина її 

визначена єдиним чином, коли 
IIT  і 0xy    відомі. Але в динамічному випадку, 

навіть при єдиному і відомому співвідношенні між 
IIT  і швидкістю, з 

отриманих рівнянь не можна визначити швидкість. Довжина тріщини і 

накопичене ковзання не можуть бути визначені в динамічному випадку з 

одного тільки відношення стійкого стану: історія, в результаті якої досягнуто 

стійкий стан, також має бути відомою. 

Дисипація енергії на передньому краї обчислюється таким же чином, як у 

випадку повільного зростання тріщини, але дисипація повної енергії також 

включає енергію тертя уздовж всієї області ковзання. Таким чином, 

енергетичне розсіювання на одиницю області вздовж інтерфейсу, після того, як 

імпульс односпрямованого ковзання пройшов повз, буде 

  
 

 

2

2
2 .

2 1

II II

f

T YdW

dS k


 

 
 


 (3.30) 

Відзначимо, що вираз (3.30) не містить 
Pr . Рівність стає точною у 

граничному випадку 0Pr a . Як буде показано пізніше, відповідний вираз для 

дисипації енергії при дозвуковій швидкості тріщини залежить від 
Pr a  і зникає 

при 0Pr a . 

Простий результат отримано для відношення prw  між дисипацією енергії 
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в області процесу Баренблатта (тобто на передньому краї) і дисипацією повної 

енергії:  

   0 0/ .pr xyw      (3.31) 

Якщо ковзання має місце в неоднорідному матеріалі, в якому є слабкою 

взаємодія між берегами тріщини, то нехтувати модулем «заліковування» 
IIH  

неприпустимо. Зміни, необхідні для ненульового значення 
IIH , незначні [50]. 

Таким чином, заміна  II II IIT T H   має бути зроблена в рівняннях (3.26) і 

(3.28), заміна  2 2 2

II II IIT T H   в (3.29) і (3.30), тоді як (3.31) залишається без 

змін. Рівняння (3.27) має бути замінено на  

  ,
2

II IIT K


  (3.32) 

   0 2 .II II xyT H a      (3.33) 

На рис. 3.2 наведено графік залежності безрозмірної швидкості   від 

безрозмірного відносного розміру лінії зсуву на основі розв’язку задачі про 

розвиток смуги. 

 

Рисунок 3.2 – Залежність безрозмірної швидкості   від розмірів лінії зсуву Pr a  
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З цієї залежності можна зробити висновок, що швидкість 

розповсюдження лінії зсуву V завжди відрізняється від швидкості звуку у 

матеріалі 
ec  у меншу сторону, оскільки випадок 

eV c  можливий тільки при 

рівності нулю співвідношення pr a , що не має фізичного сенсу. 

3.5. Локалізація зсуву пластичної деформації  

Відомо, що в матеріалах, що мають чітко визначений майданчик 

плинності, у присутності неоднорідного поля напружень можуть з'являтися 

ізольовані смуги плинності. Ці смуги займають незначний об'єм тіла порівняно 

з пружною частиною. Відповідні розривні задачі лінійної теорії пружності 

розглянуто в роботі [91]. У роботі [104, 105] була запропонована оригінальна 

концепція, що розглядає тріщини-розрізи в пружних тілах (поверхні розривів 

нормальних переміщень) як нетривіальні стани рівноваги фізично нелінійного 

пружного середовища. Така концепція була застосована в [57] для вивчення 

смуг локалізації пластичної деформації для гомогенного поля напружень в 

однорідному матеріалі за умови, що діаграма деформації матеріалу має пік-зуб 

в умовах жорсткого навантаження.  

Очевидно, що подібна картина деформації може виникати і в разі 

кусково-однорідних матеріалів. Однак локалізаційні смуги пластичної 

деформації в таких випадках спочатку з'являться в проміжних шарах, що 

забезпечують цілісність компонентів матеріалу. Це можна пояснити тим, що ці 

проміжні шари, отримані в результаті зварювання або склеювання різнорідних 

матеріалів, є, як правило, найбільш слабкими компонентами композитів. 

Розглянемо надалі смуги локалізації пластичної деформації в області поділу 

двох матеріалів за умови, що на діаграмі деформації прошарку відзначається як 

пік-зуб.  

3.6. Модель зсуву для смуг Людерса  

Для моделювання розвитку смуг Людерса в м'якій сталі, що складається з 

фериту з включеннями більш твердого перліту, розглянемо ковзання   ( d  , 
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де   – деформація зсуву, d  – характерний розмір розглянутої області) двох 

сусідніх зерен перліту і фериту під дією зсувних сил T  (T d , де   – дотичні 

напруження). Врахування пружно-пластичної моделі для феритового зерна і 

крихкого руйнування для залежності напружень зсуву перлітового зерна між 

двома зернами   від деформації зсуву   можна виразити у вигляді 

співвідношення, яке узагальнює модель Новожилова [104, 105] для тріщини I 

типу в пружному твердому тілі:  

      1 2/ exp / 1 / 1 exp / ,c c c ca                   (3.34) 

де 
1 2, ,a   – константи матеріалу, 

c  є деформацією для межі міцності для 

зсуву 
с :  

      1 2exp 1 1 1 exp 1 .c a           (3.35) 

Доданки в (3.34) відповідають порушенню перлітового зерна і відповідно 

пружно-пластичної деформації фериту.  

З (3.34) випливає, що система двох зерен може утримуватися в трьох 

рівноважних станах, позначених як 1, 2 і 3 на кривій напружень-деформацій 

~  , яка зображена на рис. 3.3. 

 

Рисунок 3.3 – Діаграма напружень-деформацій ~  , побудована на основі 

співвідношення (3.34) 



82 

Пунктирною лінією показано, власне, криву, визначену співвідношенням 

(3.34), а суцільними лініями – кусочно-лінійну апроксимацію, що 

використовується надалі, причому напруження в точках 1, 2, 3 (тобто стани на 

майданчику плинності) визначаються з геометричної рівності областей, 

виділених сірим кольором: A-2 та 2-3.  

Стан 1 означає висхідний нахил кривої напружень-деформацій ~  ; 

другий стан відповідає спадному відрізку схилом, а третій – зміцненню. Точки 

2, 3 є станами стійкої рівноваги, а 1 – нестійкої. Пара зерен, що взаємодіють за 

спадним сегментом кривої напружень-деформацій ~  , неминуче переходить 

у стан зміцнення в точці 3. 

Якщо всі пари зерен двох суміжних шарів, що перетинають тіло, 

трансформується в такий стан, то все тіло переходить у стан ідеальної 

пластичності. Таким чином, у пружному тілі, що перебуває в стані стійкої 

пружної деформації, взаємодія, що визначається законом спадаючої кривої 

напружень-деформації ~  , може існувати лише локально. У зв'язку з цим 

можна описати подібні області як лінії розриву зміщення в твердому тілі або 

смугах зсуву. Всі зерна знаходяться в стані стабільної взаємодії, що описується 

законом висхідної гілки кривої напружень-деформацій ~   навколо цих ліній, 

при цьому не відбувається розриву переміщень.  

При теоретичному дослідженні рівноважних деформацій пружно-

пластичних тіл завжди можна трактувати тіло як суцільне середовище, 

використовуючи методи теорії пластичності. Однак, можна врахувати не тільки 

форми рівноваги, коли всі зерна взаємодіють за законом висхідної (стійкої) 

гілки кривої ~  , але і такі форми, коли в тілі виникають розриви переміщень, 

між берегами котрих здійснюється взаємодія за законом спадної гілки  

кривої ~   (рис. 3.3). Форма і розміри цих розривів заздалегідь невідомі. Вони 

можуть бути визначені з рівнянь теорії пружності при завданні на берегах 

кожної лінії розриву відповідних граничних умов, що випливають із  

закону (3.34) при 
c  .  
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Оскільки строга постановка і розв'язання цієї нелінійної задачі 

викликають певні складнощі, запропоновано наближення за такими 

припущеннями:  

1) співвідношення між напруженнями і деформаціями на висхідній 

(стійкій) ділянці кривої (
c  ), тобто в області тіла, де зберігається його 

суцільність, відповідає закону Гука; 

2) рівняння рівноваги і формули, що зв'язують деформації з 

переміщеннями, приймаються в лінійній формі, тобто задача трактується як 

геометрично лінійна; 

3) на відрізку 
3c     (зміцнення починається при досягненні 

3 )  

для ~   використовується найпростіше наближення: 

  ,c ch      (3.36) 

де  h h x  – функція Гевісайда. Введемо межу плинності 
s , що визначається 

із співвідношення 

  
3

0,

с

s d





     (3.37) 

вимагаючи, щоб площа апроксимуючої кривої (рис. 3.3) була нульовою в 

інтервалі 
3c    . Ця умова еквівалентна вимозі наближення залежності, що 

забезпечує величину щільності поверхневої енергії. Прийняті спрощення 

призводять до лінеаризації всіх рівнянь задач і дозволяють отримати його 

наближений розв’язок.  

Описана модель формування смуг зсуву нагадує модель руху дислокацій, 

коли «квант» пластичного зсуву визначається як зміщення дислокації на 

відстань, що дорівнює довжині вектора Бюргерса 
0b . У моделі прийнято, що 

пластична деформація для полікристалічного матеріалу розвивається за 

рахунок пластичних зсувів окремих зерен (кристалітів), а «квант» пластичної 

деформації визначається як ковзання в межах пари зерен  .  

У межах смуги локалізації розглядатимуться лише дотичні напруження. 



84 

Враховуючи прийняті вище спрощення, можна припустити, що на краях смуги 

локалізації в області 0 x l   активні тільки дотичні напруження 
S , а на 

ділянках l x b   дотичні напруження можуть змінюватися між 
S  та 

C . Така 

модель навантаження берегів смуги аналогічна моделі Дагдейла [66, 90], але зі 

значною різницею, що напруження в межах смуги не дорівнюють  

нулю ( 0S  ).  

Висновки до розділу 3 

1. Побудовано розв'язок одновимірної задачі динаміки для стержня з 

матеріалу з піком-зубом на діаграмі одновісного навантаження. Показано 

існування повільної хвилі, що визначає рух фронту пластичної деформації. 

Дано оцінку швидкості повільної хвилі. Запропонований підхід дозволяє 

описати майданчик плинності і подальше зміцнення, а також вплив ефекту 

Баушінгера на майданчику плинності і на ділянці зміцнення при циклічному 

навантаженні.  

2. Показано, що подібна картина деформації може виникати і в разі 

кусково-однорідних матеріалів. Також зазначено, що локалізаційні смуги 

пластичної деформації в таких випадках спочатку з'являться в проміжних 

шарах, що забезпечують цілісність компонентів матеріалу. Це пояснюється 

тим, що ці проміжні шари, отримані в результаті зварювання або склеювання 

різнорідних матеріалів, є, як правило, найбільш слабкими компонентами 

композитів. 

3. Розглянуто смуги локалізації пластичної деформації в області поділу 

двох матеріалів за умови, що на діаграмі деформації прошарку відзначається як 

пік-зуб. Описано модель формування смуг зсуву, яка подібна до моделі руху 

дислокацій, коли пластичний зсув визначається як зміщення дислокації на 

відстань, що дорівнює довжині вектора Бюргерса. У моделі прийнято, що 

пластична деформація для полікристалічного матеріалу розвивається за 

рахунок пластичних зсувів окремих зерен (кристалітів), а пластична деформація 

визначається як ковзання в межах пари зерен.   
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РОЗДІЛ 4.  ФЕНОМЕНОЛОГІЧНА ТЕОРІЯ ПЛАСТИЧНОЇ ТЕЧІЇ ДЛЯ 

МАТЕРІАЛІВ З МАЙДАНЧИКОМ ПЛИННОСТІ  

4.1. Основні співвідношення теорії пластичності, що описує ефекти 

плинності  

Для формування визначальних співвідношень скористаємося теорією 

пластичної течії з комбінованим зміцненням, побудованої на таких 

положеннях:  

1. Швидкість деформації   представляється як сума пружної 
e  і 

пластичної p  частин:  

  .e p      (4.1) 

2. Швидкість пружної деформації підпорядковується закону Гука, 

записаному відносно тензорів швидкостей зміни напружень σ  і тензора 

швидкостей зміни деформацій ε : 

  .e e  σ C ε   (4.2) 

Тут 
eC  – пружна частина матриці жорсткості: 

 
2

2
1 2

e

G
G ,




  


C Ι i i   

де G  – пружний модуль зсуву,   – коефіцієнт Пуассона, i  та I  – одиничні 

тензори другого і четвертого порядку, відповідно. 

3. Пластична деформація має місце при виконанні умови плинності з 

комбінованим зміцненням, що заснована на використанні функції пластичності 

f , описану в [28-36], до якої додано параметр R  що характеризує додаткові 

процеси ізотропного зміцнення, що залежить від поточного опору руху 

дислокацій: 
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       1 0,
2

f R       s α s α   (4.3) 

де α  – девіатор залишкових напружень, що визначає кінематичне зміцнення, 

 1 tr
3

 s σ i σ  – девіатор тензора напружень Коші.  

З умови плинності слідує умова неперервності  

    0,
2

R

    

ρ
s α   (4.4) 

де α  і R  – швидкості зміни відповідно α  і R , і введені позначення  ρ s α , 

1
2

  ρ ρ .  

4. Швидкість пластичної деформації підпорядковується принципу 

градієнтальності  

  ,p

f






ε
s

  (4.5) 

де   – інтенсивність швидкості пластичної деформації зсуву ( 2 p pε ε   ). 

З (4.3) знайдемо  

  ,
2

f



 
 



s α
N

s
  (4.6) 

де N  – напрямний девіатор ( 1 1
2

  N N ). В такому випадку (4.5) набуде 

вигляду: 

  .pε  N   (4.7) 

Швидкості зміни параметрів ізотропного зміцнення d  і кінематичного 

зміцнення α  лінійно пропорційні інтенсивності швидкості пластичної 

деформації зсуву  :  
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  ( ) , ( ) ,dd E d   α E α   (4.8) 

де 
dE  та E  – коефіцієнти ізотропного і кінематичного зміцнення відповідно.  

Із умови неперервності (4.4) та з урахуванням прийнятих вище позначень 

обчислимо  

  
2

.
3

q    N σ = N α   (4.9) 

Звідси, з урахуванням (4.8), знайдемо  

  ,
pE


 


N σ

  (4.10) 

де 

  ,p RE E   N E   (4.11) 

називають пластичним модулем. Таким чином, задача побудови визначальних 

співвідношень зводиться до завдання функцій 
RE , E , тобто законів розвитку 

ізотропного і кінематичного зміцнення.  

На підставі закону Гука (4.2), враховуючи (4.7) і (4.10), отримаємо 

наступний вираз для  

  
2

,e

p

G

E
    σ C ε NN σ  (4.12) 

Помноживши праву і ліву частину останнього співвідношення на N  і додаючи 

їх, знаходимо  

  
24

2 ,
p

G
G

E
       N σ N ε N σ  

або 
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2

.
2

p

p

GE

E G
    


N σ N ε  (4.13) 

Підставляючи отриманий вираз для (4.12), отримуємо визначальні 

співвідношення теорії течії  

  , σ C ε  (4.14) 

де C  – матриця дотичної жорсткості, 
e

C  – пружна частина: 

 
24

.
2

e

p

G

G E
 


C C NN  (4.15) 

Для конкретизації визначальних співвідношень необхідно визначити 

універсальні функції і константи матеріалу, що входять в рівняння  

еволюції (4.8).  

4.2. Визначення універсальних функцій матеріалу  

Із урахуванням специфічної поведінки матеріалу на майданчику 

плинності силу опору руху дислокацій  R   представлено в такому вигляді:  

  
1 2( ) ( ) ( ),R R R     (4.16) 

де  1R   – функція розм’якшення, що пов'язана зі звільненням дислокацій на 

майданчику плинності; 
2( )R   – функція зміцнення, пов'язана з рухом 

дислокацій, причому    1 20 0 SR R    і 
S  – початкова межа плинності. 

Введемо позначення 
0(0)k kR R  і задамо умови для швидкостей цих функцій:  

  0 ,k k k kR (R R )    (4.17) 

де 1 2 10 20, , ,R R R R ,
1 2,   – константи матеріалу. 

Нехай в процесі пластичного деформування досягнуто деяке значення 
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0  . В процесі подальшого активного деформування ( 0  ) розв'язок 

рівнянь (4.17) набуде вигляду  

  0( )

0( ), 1,2.k

k k k kR R e R R k
   

     (4.18) 

Звідси випливає, що функція опору руху дислокацій є експоненціальною 

функцією пластичної деформації.  

Для опису кінематичного зміцнення скористаємося підходом [55], в 

якому залишкові напруження представлено у вигляді суми  

  
 

1

,
n

i

i

α α  (4.19) 

а кожний доданок пов'язаний з пластичною деформацією законом [68]:  

  
( ) ( ) ( ) ( )( ),ei i i p i

c c D 
 α α α  (4.20) 

де 
( )i

c  і 
( )i

cα  – константи матеріалу.  

Із (4.8), (4.19) і (4.20) для модуля зміцнення отримаємо:  

  
( ) ( ) ( )( ).

n
i i i

c c

i

N  E α α  (4.21) 

У найпростішому випадку ( 1i  ) приходимо до закону Армстронга-

Фредеріка [68]:  

  ( ).
n

c c

i

  E α N α  (4.22) 

4.3. Відмінність між діаграмою напружень-деформацій зразка і матеріалу 

при м'якому навантаженні  

Розглянемо окремий випадок одновісного розтягування (стискання), коли 

напруження   в усіх точках зразка однакові і монотонно зростають. В цьому 
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випадку маємо: 

  
11 11 11 22 33

22 33 11 22 33

, , , / 2, / ,

/ 2, / 3, , .

e

P P P P P P

E          

         

      

       
 (4.23) 

Інші компоненти тензорів , , ,Pσ ε ε α  дорівнюють нулю. Умова плинності (4.3) 

набирає вигляду: 

  

 

     

1 2

10 20 10 2 20

0 0

0,

1
1 exp ,

2

P p

C

f R R R e e R R    

     

       

    
 (4.24) 

і діаграма напружень-деформацій для випадку одновісного розтягування 

визначається за формулами: 

 
      1 2/ 3 / 3

10 20 10 2 201 exp 0,

/ .

P P
P

P

R R R e e R R

E

   
   

  

         

 

  (4.25) 

4.4. Визначення постійних матеріалу  

Для практичного опису напружено-деформованого стану матеріалу не 

вистачає значень 
10 20,R R , вплив яких проявляється тільки на ділянці 

локалізованої течії II на рис. 2.2 (с. 43). Оцінити значення цих параметрів 

можна, аналізуючи експериментальні дані з випробувань стандартних зразків. 

У роботі [83] було проведено низку дослідів, серед яких експеримент з 

одновісного розтягування полоси, виготовленої з матеріалу, в якому дуже чітко 

виражений стан текучості (тобто процес плинності закінчується при значенні 

деформацій 
T , що в рази вище деформації на межі пропорційності 

E ). 

Експеримент, результати якого показані на рис. 4.1, відбувався в умовах 

жорсткого навантаження з заданою відносною швидкістю кріплень 

4 1/ 10L L с  . При цьому фронт локалізації переміщався уздовж зразка зі 

швидкістю 
3 15 10PV с   . 
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Рисунок 4.1 – Експериментальні дані про розвиток майданчику плинності за 

результатами експериментів [83]. Пунктирною лінією показано криву 

поведінки матеріала в точці, суцільною лінією з точками – експериментальні 

дані про деформування зразка при одновісному розтягуванні 

За результатами експерименту на одноосьовий розтяг було складено 

залежності напружень і деформацій від параметру часу. У матеріалі 

спостерігався явно виражений майданчик плинності, що слідує за ділянкою 

пружності. 

На майданчику плинності напруження мали періодичні осциляції з 

амплітудою 14,7   МПа. Період осциляцій становив 13t   с, що 

відповідало деформації 0,1%L  . Використовуючи ці параметри, знаходимо 

константи матеріалу вказані у табл. 4.1.  

Таблиця 4.1 – Параметри матеріалу, необхідні для функції  R   у 

співвідношеннях (4.16), (4.17) 

1 4.0   
2 2.0   

1 0R    
2 0.1R   

10 0.04R   
20 0.05R   

0 0.5   
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На рис. 4.2 показано залежність 
P  , що відповідає співвідношенням 

(4.25), побудована у безрозмірних координатах 
SR   для напружень і 

L   для 

деформацій, з параметрами вказаними в таблиця 4.1. 

 

Рисунок 4.2 – Профілі функцій  R   (суцільна лінія),  1R   (суцільна лінія з 

точками),  2R   (пунктирна лінія) в координатах 
L SR    

Після досягнення верхньої межі плинності (точка a) на ділянці 

розм’якшення утворюється нестійка пластична деформація, і в результаті 

миттєвого переходу стану матеріалу з точки a в точку b (майданчик плинності 

a b  на рис. 4.2) досягається пластична деформація Людерса 
L . Такий перехід 

може здійснюватися лише в окремих точках зразка. Далі пластична деформація 

Людерса 
L  розвивається в сусідній точці зразка, і пластична течія триває. У 

результаті ми приходимо до моделі ідеальної пластичності для зразка в цілому, 

але до істотно неоднорідної деформації уздовж самого зразка. 

Якщо розглянути умови м’якого навантаження зразка (на відміну від 

експерименту з жорстокого навантаження), то на діаграмі P F L L  для 
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зразка утворюється майданчик плинності A B  на рис. 4.3. Кожна наступна 

точка області пластичності l послідовно знаходиться в напружено-

деформованому стані, що відповідає кожній точці ділянки A B  діаграми. 

 

Рисунок 4.3 – Діаграма м’ягкого навантаження зразка 

Якщо позначити через  / , 0 1l L     відносну довжину пластичної 

області, то значення 0   відповідатиме пружному стану зразка, 1   означає 

досягнення в усіх точках зразка деформації Людерса 
L . Значення деформації 

при плинності визначається як   LL L P FE   . Після досягнення ділянки 

зміцнення діаграми матеріалу і зразка співпадатимуть. 

4.5. Знакозмінне навантаження у межах запропонованої теорії пластичності  

Розглянемо тепер знакозмінне навантаження зразка. Для опису 

пластичної деформації зразка при такому навантаженні необхідно визначити 

значення параметра  , при якому починається розвантаження. При 

навантаженні зворотного знаку справедливі формули (4.24), і пластична 

деформація зворотного знаку починається при напруженнях менших, ніж при 

прямому навантаженні, а також проявляється ефект Баушінгера. При 
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досягненні верхньої межі плинності триває ріст параметра   і продовжує 

розвиватись пластична течія в точці до досягнення деформації Людерса 

зворотного знаку. Стан плинності зберігається у зразку, поки поточне сукупне 

значення параметра   залишається меншим за одиницю: 

 1.   (4.26) 

Відповідно, стан зміцнення у зразку досягається, коли поточне значення 

параметра   стає досягає значення одиниці. 

На рис. 4.4 показано діаграму напружень-деформацій ~   у випадку 

моделювання одновимірного навантаження полоси, коли знак навантаження 

було змінено у стані плинності перед досягненням стану зміцнення. 

 

Рисунок 4.4 – Діаграма напружень-деформацій при зміні знаку навантаження в 

одновимірному випадку 

Суцільною лінією зображено поведінку при навантаженні постійного 

знаку, пунктирною лінією з точками – поведінку, коли знак навантаження було 

змінено та мав місце стан плинності. Слід зазначити, що в результаті стан 

зміцнення почнеться ще при виконанні умови (4.26), тобто коли сумарна 

деформація в обох напрямках менша за деформацію на майданчику плинності 
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при навантаженні тільки одного знаку, тобто сформульована модель описує 

ефект Баушінгера. 

На рис. 4.5 показано діаграму ~  , отриману в результаті моделювання 

одновимірного навантаження полоси з одним повним циклом навантаження 

різного, коли знак навантаження було змінено, а потім повернуто до 

початкового значення. Суцільною лінією показано діаграму матеріалу для 

навантаження одного знаку, штриховою лінією з точками – поведінку при 

реалізації одного циклу навантаження. Так само, як і в попередньому випадку, 

стан зміцнення почнеться ще за умови (4.26), тобто коли сумарна деформація в 

обох напрямках менша за деформацію на майданчику плинності при 

деформації тільки одного знаку. 

 

Рисунок 4.5 – Діаграма напружень-деформацій зразка з одним повним циклом 

навантаження різного знаку в одновимірному випадку 

На рис. 4.6 показано результат моделювання одновимірного 

деформування полоси у випадку великої кількісті циклів зміни знаку 

навантаження. У цих випадках майданчик плинності розвивається до виконання 

умови. Жирною лінією зображено діаграму напружень-деформацій  матеріалу, 
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а тонкою лінією – випадок з великою кількістю циклів зміни знаку 

навантаження. 

 

Рисунок 4.6 – Діаграма напружень-деформацій в одновимірному випадку при 

циклічному навантажені з великою кількістю циклів 

4.6. Особливості застосування методу скінченних елементів для розв’язку 

задач моделювання конструкційних елементів в умовах плинності 

Для розв’язку двовимірних задач розвитку смуг локалізації пластичної 

деформації був використаний метод скінченних елементів [1, 14, 62, 117, 138].  

Алгоритм застосування методу скінченних елементів в умовах 

пластичної локалізації. Нехай в області      необхідно розв’язати 

деяке диференціальне завдання. Алгоритм використання методу скінченних 

елементів у такому випадку є наступним: 

1. Область   розбивають на E  підобластей які називаються 

скінченними елементами, таких, що 

 
1 1

, .
E E

e e

e e

   
 

    

2. У кожному кінцевому елементі 
e e e     вибирається система 
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нумерованих вузлів, в яких значення шуканої функції є невідомими величинами.  

3. Кожному нумерованому вузлу приписується базисна функція, така 

що в цьому вузлі вона дорівнює одиниці, а в інших нумерованих вузлах 

розрахункової області – нулю. Число базисних функцій в розрахунковій області 

дорівнює числу нумерованих вузлів, причому для різних вузлів вони мають 

властивість лінійної незалежності (чи ортогональності) по всій розрахунковій 

області.  

4. Розв’язок шуканої диференціальної задачі приблизно будується у 

вигляді лінійної комбінації базисних функцій по всім нумерованим вузлам 

розрахункової області з коефіцієнтами лінійної комбінації, рівними значенням 

шуканої функції в нумерованих вузлах.  

5. Цей розв’язок підставляється в диференціальну задачу, і, оскільки 

розв’язок наближений, результатом підстановки буде не тотожний нуль, а деяка 

функціональна нев'язка.  

6. За допомогою відомих методів зважених нев’язок (колокації, 

Гальоркіна, найменших квадратів) функціональна нев'язка мінімізується по усій 

розрахунковій області шляхом прирівнювання нулю скалярного добутку 

функціональної нев’язки і вагових функцій (скалярний добуток від 

безперервних функцій дорівнює певному інтегралу по розрахунковій області 

від добутку цих функцій), причому в методі зважених нев'язок Гальоркіна 

вагові функції в нумерованих вузлах співпадають з базисними функціями. 

Отримані співвідношення є системою лінійних алгебраїчних рівнянь (СЛАР) 

відносно значень шуканої функції в нумерованих вузлах, коефіцієнтами в якій є 

інтеграли по всій розрахунковій області від базисних функцій і їхніх похідних.  

7. Визначені інтеграли по усій розрахунковій області замінюються на 

суму інтегралів по скінченним елементам, що, в силу ортогональності базисних 

функцій, робить матрицю СЛАР сильно розрідженою, з ненульовими 

елементами, розташованими в околиці головної діагоналі (так звані стрічкові 

матриці, окремим видом яких є трьохдіагональна матриця).  

8. Розв’язується СЛАР відносно вузлових значень шуканої функції 
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будь-яким відомим методом (Гayca, простих ітерацій, Зейделя і т. п.). 

Результати розв’язку підставляються в наближене рішення відповідно до п. 4. 

При цьому отримані значення шуканої функції в нумерованих вузлах кожного 

кінцевого елементу можуть бути використані для отримання розв’язків в усіх 

точках кінцевого елементу e e e     за допомогою так званих функцій 

елементів, простим випадком яких є лінійний інтерполяційний многочлен в nR .  

Таким чином, істотною відмінністю метода скінченних елементів (МСЕ) 

від методу скінченних різниць (МСР) є те, що в МСЕ розв’язок на кожному 

елементі виходить у вигляді безперервних (чи гладких) функцій, тоді як в МСР 

– у вигляді сіткової функції (рис. 4.7).  

 

Рисунок 4.7 – Представлення розв’язку у методі скінченних різниць (а) 

та у методі скінченних елементів (б)  

Система базисних функцій. Як базисні функції розглядатимемо два 

види ортогональних базисних функцій, а саме: кусково-постійні базисні функції 

і лінійно-постійні базисні функції.  

Кусково-постійні базисні функції. Нехай в дійсному просторі 
1R  

розглядається клас функцій  x , що неперервно диференціюються необхідне 

число разів на відрізку  0;1x . Розіб'ємо цей відрізок точками , 1,mx m M , на 

M  елементарних відрізків  1,m mx x , 1,m M , і представимо функцію  x  у 

вигляді наступної лінійної комбінації:  

      
1

,
M

m m

m

x x N x  


    (4.27) 
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де  mN x  – кусково-постійні функції на кожному відрізку  1,m mx x , і, якщо ці 

функції лінійно-незалежні (чи ортогональні) при різних індексах m , будемо 

називати їх кусково-постійними базисними функціями, що визначаються 

рівністю  

   
1

1

1, при ,

0, при або , 1, ,

m m

m

m m

x x x
N x

x x x x m M





 
 

  
 (4.28) 

а 
m  значення функції  x  у нумерованих вузлах, що знаходяться всередині 

кожного відрізку  1,m mx x .  

Тоді апроксимація (4.27) функції  x  на відрізку  0;1x  за допомогою 

кусково-постійних базисних функцій (4.28) геометрично представляється 

ступінчастою функцією (рис. 4.8). 

 

Рисунок 4.8 – Апроксимація функції за допомогою  

кусково-постійних базисних функцій  

При цьому кожна базисна функція, приписана нумерованому вузлу, 

набуває значення, рівного одиниці тільки на відрізку, усередині якого 

розташований цей нумерований вузол; у всіх інших нумерованих вузлах 

розрахункової області ця базисна функція дорівнює нулю (рис. 4.9). Такі 
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базисні функції називають глобальними (рис. 4.9, а), тобто заданими у формі 

(4.28) на усій розрахунковій області. На відміну від цього, базисну функцію, 

задану на відрізку  1,m mx x  (рис. 4.9, б), називають локальною базисною 

функцією.  

 

Рисунок 4.9 – Глобальні (а) і локальні (б) кусково-постійні базисні функції  

Як видно з визначення (4.28) глобальних кусково-постійних базисних 

функцій та з рис. 4.9, а ці функції ортогональні на відрізку  0;1x  в сенсі 

скалярного добутку, тобто для двох кусочно-постійних базисних функцій з 

номерами i  і j  ( , , 1,i j i j M  ) має місце рівність: 
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Лінійні кусково-неперервні базисні функції. Якщо за базисні прийняти 

функції вигляду: 

   

 

 

1
1

1

1
1

1

1 1
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  (4.29) 

що називаються лінійними кусково-неперервними базисними функціями, то 

апроксимація (4.27) функції  x  на кожному відрізку  1,m mx x x  буде 

лінійною і безперервною у вузлах 
mx . В цьому випадку на нумеровані вузли 

приймаються вузли розбиття (рис. 4.10).  

 

Рисунок 4.10 – Апроксимація функції з використанням 

лінійних кусково-неперервних функцій  

Для окремого відрізку  1,m mx x x   з нумерованими вузлами m  та 1m  

глобальні лінійні кусково-неперервні базисні функції представлені на 

рис. 4.11, а, а локальні – на рис. 4.11, б. З рис. 4.11 видно, що глобальні базисні 

функції, побудовані для різних вузлів на різних відрізках, ортогональні на всій 

області визначення змінної x . Можна побудувати й інші базисні функції, у 

тому числі й нелінійні.  
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Рисунок 4.11 – Глобальні (а) і локальні (б) лінійні 

кусково-неперервні базисні функції  

Метод скінченних елементів в стаціонарних задачах математичної 

фізики. У цьому підпункті розглядається покроковий алгоритм розв’язку задач 

математичної фізики за допомогою методів скінченних елементів, з 

урахуванням процесів пластичності. Враховується, що всі початкові і крайові 

умови є стаціонарними, тобто не включають параметру часу (не задані 

швидкості, та ін.). 

Основні етапи розв’язку стаціонарних задач математичної фізики 

методом скінченних елементів. Зазначимо основні етапи розв’язання 

двовимірних стаціонарних задач математичної фізики за допомогою метода 

скінченних елементів на основі методу Гальоркіна зважених нев'язок.  

1. Розрахункова область 
2R   , яка може бути і багатозв’язною, 

розбивається на елементи того ж простору. Для двовимірної розрахункової 

області як кінцеві елементи приймаються трикутні або чотирикутні елементи, 

причому останні можна розділити діагоналлю на два трикутні елементи. 

Достоїнствами трикутних елементів є можливість хорошої апроксимації межі 

області і можливість апроксимації шуканої функції на трикутному елементі за 

допомогою простої поверхні площини, що визначається значеннями шуканої 

функції в нумерованих вузлах елементу (зазвичай це вершини трикутного 

елементу). Розбиття на елементи має задовольняти умові e

e

  ,  
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причому суміжні елементи повинні мати загальні сторони і загальні  

нумеровані вузли (рис. 4.12).  

 

Рисунок 4.12 – Розбиття двовимірної розрахункової області: 

а – правильне розбиття; б – неправильне розбиття  

2. У нумерованих вузлах фіксуються вузлові значення шуканої функції, 

що є невідомими величинами та підлягають визначенню.  

3. За допомогою вузлових значень в нумерованих вузлах елементу 

шукана функція апроксимується поверхнею (найчастіше лінійною функцією, 

що описує площину), яка називається функцією елементу, що дозволяє 

визначити шукану функцію у будь-якій точці скінченного елементу. При цьому 

якщо кількість нумерованих вузлів елементу на одиницю більше розмірності 

простору 
nR , то елемент називається лінійним. Якщо в елементі число 

нумерованих вузлів більше ніж 1n  , то цей елемент називається нелінійним, а 

шукана функція на ньому апроксимується за допомогою нелінійної функції.  

4. Кожному нумерованому вузлу розрахункової області    

приписується базисна функція, рівна одиниці у вузлі, якому вона приписується, 

і нулю в усіх інших вузлах розрахункової області. Базисні функції для різних 
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нумерованих вузлів є лінійно незалежними.  

5. Наближений розв’язок задачі формується у вигляді лінійної комбінації 

базисних функцій по всім нумерованим вузлам розрахункової області з 

коефіцієнтами лінійної комбінації, рівними вузловим значенням шуканої 

функції.  

6. Цей розв’язок підставляється в диференціальну задачу, що призводить 

не до тотожного нуля, оскільки підставляється наближений розв’язок, а до 

нев'язок по розрахунковій області R  і межі R .  

7. Відповідно до різних методів зважених нев'язок, найбільш ефективним 

з яких є метод Гальоркіна, нев'язки ортогоналізуються з системою вагових 

функцій (у методі Гальоркіна за вагові функції приймаються базисні функції). 

Результатом такої ортогоналізації є глобальна система лінійних алгебраїчних 

рівнянь відносно вузлових значень шуканої функції. Число рівнянь в цій 

системі співпадає з кількістю нумерованих вузлів розрахункової області. Кожен 

елемент матриці і вектору правих частин цієї СЛАР містить в тому або іншому 

ступені вклади елементів матриць і правих частин локальних СЛАР, 

сформованих для кожного скінченного елементу. Процес підсумовування таких 

вкладів скінченних елементів називають ансамблюванням скінченних 

елементів, тобто локальним номерам вузлів кінцевих елементів ставляться у 

відповідність глобальні номери вузлів розрахункової області.  

8. Розв’язуючи отриману глобальну СЛАР яким-небудь з відомих 

методів, отримаємо вузлові значення шуканої функції, за допомогою яких з 

функцій елементів визначаються значення шуканої функції у будь-яких точках 

кінцевих елементів.  

Принципи розбиття плоских областей на скінченні елементи. 

Розбиватимемо плоску розрахункову область 
2R    на трикутні скінченні 

елементи, при цьому номер елементу позначається верхнім індексом e , а 

локальні номери вузлів в елементі – нижніми індексами , ,i j k , причому якщо 

зафіксований який-небудь вузол під номером i , то інші вузли під номерами j  
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та k  нумеруються проти годинникової стрілки. Перерахуємо основні принципи 

розбиття плоских розрахункових областей.  

1. Складні плоскі області спочатку розбивають на підобласті, які потім 

розбивають на скінченні елементи.  

2. При розбитті на скінченні елементи тонкостінних областей кожен 

скінченний елемент має містити як мінімум один нумерований вузол, що 

знаходиться усередині розрахункової області, адже якщо всі нумеровані вузли 

розташовані на границі розрахункової області, то при апроксимації 

враховуються тільки граничні умови і не враховується диференційне рівняння 

(рис. 4.13). 

 

Рисунок 4.13 – Скінченні елементи в тонкостінних розрахункових областях: 

а – неправильне, б – правильне розбиття  

3. Глобальну нумерацію вузлів в розрахунковій області необхідно 

здійснювати так, щоб в окремому скінченному елементі різниця між 

максимальним і мінімальним номерами була якомога менше, оскільки від цієї 

різниці залежить напівширина b  стрічки матриці (рис. 4.14) в глобальній 
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матриці результуючої системи алгебраїчних рівнянь, яка є стрічковою, якщо 

всі її ненульові елементи на напівширині b  розташовані біля головної 

діагоналі.  

 

Рисунок 4.14 – Вигляд стрічкової матриці глобальної 

системи лінійних алгебраїчних рівнянь  

Чим менше напівширина b  стрічкової матриці, тим стійкіше рішення 

СЛАР. Таким чином, нумерація вузлів в тонкостінній розрахунковій області, 

представленій на рис. 4.13, здійснюється чергуванням номерів на верхній і 

нижній межах (нумерація вузлів спочатку по верхній, а потім по нижній межі 

призведе до значної різниці номерів в кожному кінцевому елементі і такого ж 

збільшення напівширини стрічки матриці).  

4. У багатозв’язних областях внутрішні порожнини вписують у 

багатокутники, у вершини яких поміщають нумеровані вузли, що сполучаються 

гранями з іншими нумерованими вузлами, розташованими всередині 

розрахункової області.  

Апроксимація лінійними многочленами. Базисні функції. 

Застосування методу скінченних елементів розглянемо на прикладі наступної 
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граничної умови третього роду для рівняння Пуассона в області, представленій 

на рис. 4.15.  

        , , , , , ,
u u

x y x y f x y x y
x x y y

  
     

     
      

 (4.30) 

       , , , , .
u

x y u x y x y
n 



   


  


 (4.31) 

 

Рисунок 4.15 – Розрахункова область 

Розіб'ємо спочатку область   на три підобласті у вигляді трьох 

чотирикутників. Потім усередині кожного чотирикутника введемо по одному 

внутрішньому вузлу, які з'єднаємо з вузлами у вершинах чотирикутників. 

Пронумерувавши усі вузли, отримаємо розбиття всієї області на дванадцять 

трикутних кінцевих елементів із загальним числом нумерованих вузлів, рівним 

одинадцяти. 

Кожному нумерованому вузлу приписується базисна функція  ,mN x y  у 

вигляді лінійного многочлена, значення якого дорівнює одиниці у вузлі, якому 

вона приписана, і нулю – в усіх інших вузлах розрахункової області. На 

рис. 4.16 наведений приклад базисної функції  ,e

iN x y , приписаної вузлу в 
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локальній нумерації вузлів в кінцевому елементі e . Така базисна функція має 

вигляд: 

   , ,e e e e

i i i iN x y x y      (4.32) 

де коефіцієнти , ,e e e

i i i    знаходяться з умов: 

       , 1, , 0, , 0.e e e

i i i i j j i k kN x y N x y N x y    

 

Рисунок 4.16 – Базисна функція e

iN   

При цьому координати нумерованих вузлів визначені положенням вузлів в 

розрахунковій області відносно початку координат. Виконання цих трьох умов 

призводить до наступної системи з трьох лінійних алгебраїчних рівнянь 

відносно коефіцієнтів , ,e e e

i i i   :  
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1 1

1 0 ,

1 0

e

i i i

e

j j i

e

k k i

x y

x y

x y







    
    

    
        

 (4.33) 

яка має розв’язки  

      
1 1 1

, , ,
2 2 2

e e e

i j k k j i j k i k je e e
x y x y y y x x  

  
       

де e  – площа елементу,  

  

1
1

det 1 .
2

1

i i

e

j j

k k

x y

x y

x y



 
 


 
  

 

Для решти вузлів j  і k  скінченного елементу e  базисні функції  ,e

jN x y  

і  ,e

kN x y  формуються аналогічно. Тоді рівність (4.32) для цих вузлів матиме 

вигляд: 

  

 

 

, ,

, ,

e e e e

j j j j

e e e e

k k k k

N x y x y

N x y x y

  

  

  

  
 

а система (4.33) зберігається, за винятком двох груп невідомих 

, , ; , ,e e e e e e

j j j k k k       і двох векторів правих частин  0 1 0
T

 для e

jN  і  0 0 1
T

 

для e

jN .  

Наближений розв’язок задачі (4.30), (4.31) знаходиться у вигляді лінійної 

комбінації базисних функцій, коефіцієнтами якої є значення шуканої функції в 

нумерованих вузлах, тобто у формі  

       
1

, , , ,
M

m m

m

u x y u x y u N x y


    (4.34) 
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де M  – число нумерованих вузлів.  

Для окремого елементу e  розв’язок (4.34) представляється у вигляді  

  
     

       

, , ,

, , , , ,

e e e

i i i i

e e e e

j j j j k k k k

x x y u x y N x y

u x y N x y u x y N x y

 

 
  (4.35) 

і називається функцією елементу. З її допомогою значення шуканої функції 

можна визначити у будь-якій точці скінченного елементу, як тільки стануть 

відомими вузлові значення , ,e e e

i j ku u u . Система базисних функцій 

 , , 1,mN x y m M  має властивість повноти, оскільки при M   розв’язок 

(4.34) може скільки завгодно точно апроксимувати шукану функцію.  

Слабке формулювання скінченно-елементного методу Гальоркіна. 

Якщо підставити наближений розв’язок (4.34) у диференціальну задачу (4.30), 

(4.31), то результатом підстановки буде не тотожний нуль, оскільки (4.34) – 

наближений розв’язок, а деяка функціональна нев'язка  ,R x y  по 

розрахунковій області   і нев'язка  ,R x y  – по границі  :  

     
ˆ ˆ

, , ,
u u

R x y f x y
x x y y

  
     

     
      

 

     
ˆ

ˆ, , .
u

R x y u x y
n

 


  


  


 

Відповідно до методів зважених нев'язок вимагаємо ортогональність цих 

функціональних нев'язок і спеціальним чином підібраних вагових функцій 

 , , 1,sW x y s M  для нев'язки  ,R x y  і  , , 1,sW x y s M  для нев'язки  ,R x y . 

Для неперервних функцій ,  ,R x y  це означає рівність нулю 

скалярних добутків  , 0sR W   і  , 0sR W   або 

  
   , , 0, 1, ,s sR W R W s M   

 

що призводить до рівності нулю суми подвійного і криволінійного інтегралів 

 ,R x y
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відповідно по області   і границі  :  

  

   

   

 

, ,

ˆ ˆ
, ,

ˆ
ˆ , 0, 1, ,

s s

s

s

R W R W

u u
f x y W x y dxdy

x x y y

u
u x y W d s M

n

 






 

   

 

      
       

       

 
     

 





  (4.36) 

де  ,sW x y  – вагові функції для внутрішніх вузлів розрахункової області,  

а  ,sW x y  – вагові функції для граничних вузлів розрахункової області, 1,s M . 

Вагові функції вибираються так, щоб вони були ортогональні нев’язкам по 

області   и по границі  . Відповідно до методу Гальоркіна зважених 

нев'язок вагові функції рівні базисним: 
s sW N , s sW N .  

Для базисних функцій вигляду (4.32) інтеграли від других похідних 

базисних функцій (відповідно до (4.34) наближений розв’язок  ˆ ,u x y  містить 

базисні функції) не існують, оскільки вони прямують до   або  . Для 

послаблення гладкості підінтегральних функцій у (4.36) використовуємо першу 

формулу Гріна, згідно з якою для двох достатнє число разів диференційованих  

функцій  ,u x y  і  ,v x y  має місце рівність: 

  

,

u u
v dxdy

x x y y

v u v u u
dxdy v d

x x y y n



 

 

   

      
     

       

     
       

     



 
 

що є узагальненням на двовимірний випадок формули інтегрування по 

частинах у визначеному інтегралі.  

Тоді, підставляючи в (4.36) розв’язок (4.34) і застосовуючи до отриманого 

виразу першу формулу Гріна, в якій замість функції  ,v x y  підставлена  

функція  ,sN x y , а замість  ,u x y  – функція  ˆ ,u x y , отримаємо слабке 

формулювання скінченно-елементного методу Гальоркіна:  
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   

1

, , , 1, .

M
s m s m

m

m

m m
s s s m

s s

N N N N
u dxdy

x x y y

N N
N d N d N N d

n n

f x y N dxdy N x y d s M



  

 

 

     

 



     
       

    

 
      

  

  

 

  

 

  (4.37) 

Вагові функції sN  на границі   можна вибрати так, щоб криволінійні 

інтеграли по границі (другий і третій інтеграли в лівій частині виразу (4.37)) 

скоротилися, тобто прийняти s sN N  . Тоді вираз (4.37) набуде вигляду: 

  

   

1

, , , 1, .

M
s m s m

m s m

m

s s

N N N N
u dxdy N N d

x x y y

f x y N dxdy N x y d s M

 

 

   

 



     
        

     

   

  

 

 (4.38) 

Вирази (4.38) – це неоднорідна система лінійних алгебраїчних рівнянь 

порядку M , котра у векторно-матричній формі має вигляд: 

  ,Au F  (4.39) 

де елементи 
sma  матриці A і правих частин F  утворені додаванням вкладів 

окремих скінченних елементів (відповідно до адитивної властивості кратних і 

криволінійних інтегралів):  

  
1 1

, .
E E

e e

sm sm s s

e e

a a F F
 

     

СЛАР (4.38) або (4.39) називають глобальною СЛАР, матрицю A і вектор 

правих частин F  – відповідно глобальною матрицею (чи матрицею 

жорсткості) і глобальним вектором правих частин.  

Для окремого скінченного елементу 
e e   з локальними номерами  

вузлів , ,i j k  на основі глобальної СЛАР (4.39), елементи матриці і вектору 
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правих частин якої визначаються виразом (4.38), можна побудувати локальну 

СЛАР: 

  
e e eA u F   (4.40) 

з локальною матрицею , , , ; , ,e e

smA a s i j k m i j k      і локальним вектором 

правих частин , , ,e e

sF f s i j k    , тобто  

  , .

e e e e

ii ij ik i

e e e e e e

ji jj jk j

e e e e

ki kj kk k

a a a F

A a a a F F

a a a F

   
   

    
   
   

  

Елементи , , , ; , ,e

sma s i j k m i j k  , мають вигляд виразів у фігурних дужках 

СЛАР (4.38), де інтеграли обчислюються по скінченному елементу 
e e  , а 

компоненти , , ,e

sF s i j k  мають вигляд правих частин СЛАР (4.38) на 

скінченному елементі 
e e  , тобто  

  

, , , ; , , ,

e

e

e e e e
e s m s m
sm

e e

s m

N N N N
a dxdy

x x y y

N N d s i j k m i j k





 

 

    
     

    

  




  (4.41) 

     , , , , , .
e e

e e e e e

s s sF N x y d f x y N dxdy s i j k

 

       (4.42) 

У виразах (4.41), (4.42) криволінійні інтеграли дорівнюють нулю, якщо 

скінченний елемент не містить граней, що є граничними. Елемент 
e

sma  локальної 

матриці 
eA  обчислюється таким чином, що для кожного номера s  

перебираються усі номери m . Наприклад, для локального номера s i  

перебираються усі номери , ,m i j k ; для , , ,s j m i j k  ; для , , ,s k m i j k  .  

При обчисленні подвійних інтегралів у виразах (4.41), (4.42) 

використовуються базисні функції (4.32) і теорема про середнє значення: 
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   

 

, ,

, , , , ,

e

e e e e
e es m s m

e e e e e e

ср s m s m

N N N N
x y x y dxdy

x x y y

s m i j k



 

     

    
  

    

   


  (4.43) 

   
1

, , , , .
3e

e e e e

s срf x y N dxdy f s i j k



     (4.44) 

де відповідно до теореми про середнє значення: 

     * * * *, , , ,e e

ср срx y f f x y     

     * *1 1
, ,

3 3
i j k i j kx x x x y y y y       

де e  – площа трикутного елемента, ,e e

s s   – коефіцієнти у базисних 

функціях (4.32).  

При обчисленні криволінійних інтегралів у виразах (4.41), (4.42) 

покладемо для визначеності, що на границю   виходять вузли i  і k  елемента 

e e   (рис. 4.17). 

 

Рисунок 4.17 – До обчислення криволінійних інтеrралів  

Тоді добутки    , , , , ,e e

s mN x y N x y s m i k  , геометрично представляють 

собою поверхні другого порядку, а їхні перерізи площиною qik  є кривими 

другого порядку, а точніше – квадратичними параболами. Таким чином, 

криволінійний інтеграл у виразі (4.41) геометрично дорівнює заштрихованій 

площі на рис. 4.17, тобто  
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     
2 21

, ,
3e

e e

s m k i k iN N d x x y y s m



        (4.45) 

     
2 21

, ,
6e

e e

s m k i k iN N d x x y y s m



       (4.46) 

оскільки площа криволінійного трикутника qik  відповідно до теореми про 

середнє значення рівна 1 3 , де   – відстань між вузлами i  і k .  

З тієї ж причини має місце рівність  

         
2 2* * 1

, , ,
2e

e e

s k i k iN x y d x y x x y y



          (4.47) 

де 
* *,x y  мають вигляд: 

       * * * *1 1
, , , .

2 2

e

i k i k срx x x y y y x y       

Таким чином, відповідно до виразів (4.43)-(4.47) локальна матриця eA  і 

вектор правих частин 
eF  СЛАР для скінченного елементу 

e e e     мають 

вигляд (у разі, коли на границю   виходять вузли i  та k  скінченного елемента)  

  

   

   

   

   

2 2

2 2

2 2

2 2

1 0 1 2

0 0 0 ,
3

1 2 0 1

e e e e e e e e e e

i i i j i j i k i k

e e e e e e e e e e e e e

ср j i j i j j j k j k

e e e e e e e e e e

k i k i k j k j k k

k i k i

A

x x y y

         

           

         



   
 
 

       
 

   
 

 
 

   
 
  

  (4.48) 

  

   

   

2 2

2 2

1
3

2

3 .

1
3

2

e e e

ср k i k i ср

e e e

ср

e e e

ср k i k i ср

x x y y f

F f

x x y y f

 



 

 
      

 
   
 

      
 

 (4.49) 
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У разі, якщо розв’язується гранична умова другого роду для того ж 

рівняння (4.30), слабке формулювання (4.37) набуде вигляду ( s sW N ): 

  
   

1

, , , 1, ,

M
s m s m

m

m

m
s s m

s s

N N N N
u dxdy

x x y y

N
N d N N d

n

N f x y dxdy N x y d s M



 

 

 

  

 



     
    

    


   

 

   

 

 

 
 

де  

     cos , cos , ,m m mN N N

n x y

  
 

  
i n j n  

а n  – вектор зовнішньої нормалі до границі  .  

Тому до обчислення інтегралів (4.43)-(4.47) необхідно додати обчислення 

криволінійних інтегралів від добутку вагових функцій на похідні по нормалі від 

базисних функцій. Тоді  

  

   

       
2 2

cos , cos ,

1
cos , cos , ,

2

e e

e e e
e e e em m m
s ср s s

e e e

ср m m k i k i

N N N
N d N N d

n x y

x x y y

 

   

  

   
    

   

        

  i n j n

i n j n

  (4.50) 

якщо на границю   виходять вузли i  та k .  

Якщо скінченні елементи жодною гранню не виходять на границю  

області  , то відповідні криволінійні інтеграли дорівнюють нулю.  

Ансамблюваня елементів і побудова глобальної СЛАР. Для побудови 

глобальної матриці жорсткості A і вектора правих частин F  системи (4.39) 

необхідно локальним номерам вузлів , ,i j k  кожного елементу поставити у 

відповідність глобальні номери вузлів , 1,m m M . При цьому кожна локальна 
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матриця eA  елементу розширюється до розміру M M , тобто в глобальній 

матриці A ненульові елементи локальної матриці eA  стають на місця, що 

визначаються глобальними номерами вузлів елементу e . Аналогічно для 

вектору правих частин F .  

Потім розширені таким чином матриці і вектори правих частин усіх 

скінченних елементів додаються, внаслідок чого отримуємо глобальну  

матрицю A і вектор правих частин F , або глобальну СЛАР (4.39).  

Такий процес об'єднання локальних СЛАР для скінченних елементів в 

глобальну СЛАР називається ансамблюванням скінченних елементів.  

Для даного прикладу (рис. 4.15) 11M  . Тоді, наприклад, для елементу з 

номером 4 визначена наступна відповідність локальних і глобальних номерів 

вузлів 1i  , 4j  , 5k  . Тоді локальна матриця елементу 4, що має вигляд  

  

4 4 4

4 4 4 4

4 4 4

ii ij ik

ji jj jk

ki kj kk

a a a

A a a a

a a a

 
 

  
 
 

 

перетвориться в розширену матрицю 4

расA  розміру 11 11  наступним чином:  

  

4 4 4

11 14 15

4 4 4
4 41 44 45

4 4 4

51 54 55

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0
.

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

рас

a a a

a a a
A

a a a

 
 
 
 
 
 
 
 
 
 
 
  

 

Аналогічно вектор правих частин 
4 4 4 4, ,

T

i j kF F F F     локальної  

системи (4.40) перетворюється на розширений вектор з одинадцятьма 

компонентами:  
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4 4 4 4

1 4 50 0 0 0 .
T

расF F F F     (4.51) 

Операція додавання здійснюється відповідно до адитивної властивості 

кратних і криволінійних інтегралів. При обчислені за допомогою ЕОМ в пам'яті 

досить зберігати матрицю-суматор і вектор-суматор, а також буферну матрицю 

і вектор поточного елементу. Результуючу СЛАР (4.39) можна розв’язати 

одним з відомих методів, а значення шуканої функції у внутрішніх точках 

кінцевого елементу визначаються по вузлових значеннях за допомогою функції 

елемента (4.35). 

4.7. Чисельне моделювання пластичної локалізації в елементах конструкцій в умовах 

плинності 

Для чисельного моделювання поведінки зразків, вироблених із матеріалів 

із майданчиком плинності було використано скінченно-елементний пакет 

SIMULIA Abaqus Learning Edition. Перевагами цього програмного пакету є 

здатність задавати поведінку нестандартних матеріалів, зокрема було 

використано матеріал з кусково-лінійною діаграмою напружень-деформацій, а 

також низхідні ділянки на цій діаграмі, що відповідає процесу деформаційного 

розм’якшення. Було розглянуто дві задачі деформування тіл, виготовлених з 

одного матеріалу, під дією зовнішніх навантажень. 

Розглянуто чистий згин полоси (поздовжнього перерізу, що містить вісь 

балки, симетричної по ширині) постійної висоти h та довжини L під дією 

згинального моменту M (рис. 4.18). 

 

Рисунок 4.18 – Чистий згин полоси під дією згинальних моментів  

Механічна поведінка матеріалу пластини задається кусочно-лінійною 
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діаграмою, параметри якої задані в табл. 4.2. Діаграма має низхідну ділянку, що 

слідує безпосередньо за ділянкою пружного деформування (рис. 2.1, с. 42). 

Напружено-деформований стан в полосі залишається однорідним до тих пір, 

поки величина напружень в крайніх волокнах 

( , ' 'A A A A  , рис. 4.18) не досягне значення верхньої межі плинності 

100T   МПа [83]. 

Таблиця 4.2 – Параметри кусочно-лінійної діаграми матеріалу 

Параметр Значення 

Межа пружності 
E  0,2 % 

Межа плинності 
T  2,2 % 

Напруження 
T  на початку 

плинності 
100 МПа 

Напруження 
P  закінчення 

розм’якшення 
80 МПа 

Деформація 
P   2,0 % 

Дослідження процесу деформації проводилося з використанням скінчено-

елементної моделі (рис. 4.19). З огляду на симетрію в моделі враховано тільки 

половину пластини. На осі симетрії пластини введена початкова недосконалість 

P у вигляді скінченного елемента з межею плинності 
*

T , що становить 80% від 

межі плинності всього іншого матеріалу. Таким чином, процес деформації 

полоси після досягнення межі плинності стає неоднорідним [48]. 

 

Рисунок 4.19 – Скінченно-елементна модель полоси 
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Результати моделювання процесу пластичної локалізації при різних 

значеннях згинального моменту M  представлені на рис. 4.20, де зображено 

область в околиці вузла початкової недосконалості P. На кожному рисунку 

представлено область розмірами 6,88×5 см, у якої нижня границя співпадає з 

нейтральною лінією (O–O на рис. 4.18), верхня границя області співпадає з 

верхньою границею полоси (A–A на рис. 4.18), а ліва границя – з вертикальною 

віссю симетрії полоси. Таким чином, вузол з початковою недосконалістю 

розташований у верхньому лівому куті. Темнішим відтінком позначається 

область локалізації, а саме вузли, в яких після досягнення напруженнями 

значення 
T  починається процес розм’якшення та зниження напружень до 

P  

згідно з низхідною ділянкою A–P на діаграмі напружень-деформацій, що 

показана на рис. 2.1 (с. 42). 

Коли напруження навколо початкової недосконалості P досягають 

значення 
*

T , виникає область локалізації (верхній лівий кут на рис. 4.20, a) 

[115]. При збільшенні згинального моменту область локалізації розширюється у 

вигляді полоси локалізації (рис. 4.20, b-d), головна вісь якої відхилена по 

відношенню до вертикалі на кут, близький до 35° [60]. Область локалізації 

продовжує розширюватися від верхньої границі вглиб матеріалу у напрямку 

нейтральної лінії (рис. 4.20, e-l). Проте лінія локалізації не може досягти 

нейтральної лінії через зниження напружень при віддаленні від верхньої 

границі полоси. При подальшому збільшені згинального моменту область 

локалізації розвивається у зворотному напрямку від нейтральної лінії до 

поверхні (рис. 4.20, l). 

На рис. 4.20, l зображено стан області локалізації, коли величини 

згинального моменту M достатньо, щоб всі елементи на верхній границі полоси 

досягли напружень 
T , і стан пластичності став однорідним. Таким чином, 

стан пластичного шарніра на рис. 4.20, l, викликаний початковою 

недосконалістю, при чистому згині в полосі досягається тоді, коли закінчено 

процес утворення смуги пластичної локалізації. 
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a b 

  
c d 

  
e f 

Рисунок 4.20 – Результати чисельного моделювання розвитку області 

локалізації в околі початкової недосконалості P  при чистому згині полоси: a – 

момент, коли напруження в елементах верхньої вільної поверхні досягають 
*

T  

(80% від 
T , межа для елемента початкової недосконалості); b-f – розвиток 

області локалізації при зростанні деформацій. 

Було використано максимальну кількість елементів, які дозволяє 

чисельний пакет SIMULIA Abaqus Learning Edition, а саме 1 тис. Слід 

зазначити, що існує нижня границя кількості вузлів, за якої не буде 

спостерігатись явище локалізації пластичної деформації, а за межею 

пропорційності одразу наступає однорідний пластичний стан. 
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k l 

Рисунок 4.20 (продовженя) – Результати чисельного моделювання розвитку 

області локалізації в околі початкової недосконалості P  при чистому згині 

полоси: g-k – розвиток області локалізації при зростанні деформацій; l – 

момент, коли напруження досягають значення 
T . 

4.8. Моделювання пластичної деформації у трубі під дією внутрішнього 

тиску 

Розглядається деформація труби діаметром D із товщиною стінки d під 

дією внутрішнього тиску q (рис. 4.21). Механічна поведінка матеріалу труби 

задається діаграмою з низхідною ділянкою, що слідує безпосередньо за 

ділянкою пружного деформування (рис. 2.1, с. 42). Напружено-деформований 
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стан в поперечному перерізі залишається однорідним до тих пір, поки величина 

напружень не досягне значення верхньої межі плинності 100T   МПа [83]. 

 

Рисунок 4.21 – Постановка задачі про пластичну деформацію 

труби під дією внутрішнього тиску q 

Для дослідження процесу деформації використовується скінченно-

елементна модель (рис. 4.22). З огляду на симетрію, в моделі розглядається 

тільки радіальний сектор труби. На внутрішній поверхні труби введена 

початкова недосконалість P  у вигляді скінченного елемента з межею 

плинності 
*

T , що становить 80% межі плинності іншого матеріалу. Таким 

чином, процес деформації пластини після досягнення межі плинності стає 

неоднорідним [48]. Результати моделювання процесу локалізації в околі 

початкової недосконалості P  при різних значеннях внутрішнього тиску q 

представлені на рис. 4.23. На кожному рисунку зображено область розмірами 

5,5×2,75 см в околиці елемента початкової недосконалості P. Нижній край 

являє собою внутрішню поверхню труби, яка знаходиться під дією тиску. 

Темним кольором позначається область локалізації, а саме вузли скінченно-
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елементної моделі, де після досягнення напруженнями значення 
T  

починається процес розм’якшення, та напруження знижуються до величини 
P  

 

Рисунок 4.22 – Скінчено-елементна модель частини 

труби під дією внутрішнього тиску 

При досягненні напруженнями в околиці початкової недосконалості P 

значення 
*

T  виникають дві області локалізації, симетричні відносно радіусу 

труби, що проходить через точку P (рис. 4.23, a) [115]. На відміну від випадку 

чистого згину полоси (рис. 4.20) області локалізації не охоплюють елементи на 

внутрішній поверхні труби через особливості моделювання задачі, зокрема 

через те, що на внутрішній поверхні задано граничні умови. При збільшенні 

внутрішнього тиску області локалізації розширюються (рис. 4.23, b-g), але на 

відміну від попереднього випадку, область локалізації розвивається не вздовж 

прямої лінії, а вздовж дуги [94]. На рис. 4.23, h зображено стан області 

локалізації, коли величини внутрішнього тиску q достатньо, щоб всі елементи 

на внутрішній границі труби досягли напружень 
T , і стан пластичності став 

однорідним. 
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Рисунок 4.23 – Результати чисельного моделювання розвитку області 

пластичної локалізації в трубі в околі початкової недосконалості P при 

збільшені внутрішнього тиску q: a – момент, коли радіальні напруження в 

елементах внутрішньої поверхні досягають 
*

T  (80% від 
T , межа для елемента 

початкової недосконалості); b-g – розвиток області локалізації при зростанні 

деформації; h – момент, коли напруження досягають значення 
T . 

Висновки до розділу 4 

1. Описано, які параметри, вплив яких проявляється тільки на ділянці 

локалізованої течії II на рис. 2.2 (с. 43), необхідні для практичного опису 

напружено-деформованого стану матеріалу в умовах плинності. Оцінено 

значення цих параметрів з урахуванням експериментальних даних з 

випробувань стандартних зразків. 
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Було проаналізовано низку експериментальних дослідів, серед яких 

експеримент з одновісного розтягування полоси, в якому дуже чітко виражений 

стан плинності (тобто процес плинності закінчується при значенні 

деформацій 
T , що в рази вище деформації на межі пропорційності 

E ). За 

результатами аналізу даних експериментів, що відбувались в умовах жорсткого 

навантаження з заданою відносною швидкістю кріплень 
4 1/ 10L L с  , було 

визначено, що фронт локалізації переміщався уздовж зразка зі 

швидкістю  
3 15 10PV с   . 

2. Розглянуто знакозмінне навантаження зразка. Для опису пластичної 

деформації зразка при такому типу навантажень визначено механічні 

параметри та їх граничні значення, при досягненні яких починається 

розвантаження. Показано, які співвідношення мають місце при навантаженні 

зворотного знаку, а також зазначено, що пластична деформація зворотного 

знаку починається при напруженнях менших, ніж при прямому навантаженні. 

Також при розробці моделі враховано ефект Баушінгера. При досягненні 

верхньої межі плинності триває ріст параметра і продовжує розвиватись 

пластична течія в точці до досягнення деформації Людерса зворотного знаку. 

3. За допомогою метода скінченних елементів розв’язано задачі 

деформації тіл, виготовлених з матеріалів з майданчиком плинності. Розглянуто 

особливості, розвитку лінії ковзання в окремих випадках. Ці результати 

збігаються з результатами експериментів з дослідження лінії ковзання [60]. 
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ВИСНОВКИ 

У дисертації зроблено теоретичне узагальнення і запропоновано нове 

роз’яснення науково-прикладної задачі щодо побудови аналітичних методів і 

чисельних моделей, що дозволяють описувати поведінку матеріалів з 

майданчиком плинності, досліджувати процеси втрати стійкості, будувати 

моделі вичерпання несучої здатності і втрати стійкості при знакозмінному 

навантаженні та у стані пластичності. Основні результати дисертаційної роботи 

полягають у такому: 

1. Запропоновано модель одновимірної пластичної деформації для 

матеріалу з майданчиком плинності. В рамках цієї моделі розглянуто задачу 

про рух пластичної хвилі та сформульовано критерій переміщення смуги зсуву. 

Розроблено модель переміщень смуги зсуву і утворення системи смуг для 

матеріалів, що зміцнюються при досягненні граничного стану. 

2. З використанням відомих опублікованих даних про стандартні 

експерименти над типовими зразками, виготовленими з матеріалів, що 

досліджуються, отримано фізичні параметри матеріалу. При підстановці цих 

параметрів у сформульовані співвідношення можна визначити залежність між 

швидкістю повільної пластичної хвилі із розміром зерна та фізичними 

розмірами конструкційного елемента.  

3. У результаті розв'язання задачі Йоффе отримано співвідношення між 

швидкістю руху розриву уздовж фронту хвилі та відношенням розміру зерна до 

розміру лінії розриву, що дозволило визначити швидкість руху розриву для 

матеріалу. Встановлено, що швидкість руху розриву уздовж смуги ковзання 

менша за пружну швидкість.  

4. Запропоновано розв'язок розвитку ліній ковзання в умовах складного 

зсуву. Розв'язок знайдено шляхом введення в рівняння для стаціонарної задачі 

функцій спеціального виду, які вносять в рівняння стану параметр часу. 

Запропонований підхід в перспективі можна застосувати до цілого ряду задач 

динаміки смуг локалізації та для розгляду розвитку смуги зсуву під дією 
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зовнішніх навантажень іншого характеру. 

5. Запропоновано узагальнений варіант теорії течії з комбінованим 

зміцненням для опису деформування матеріалу, на діаграмі одновісного 

розтягування якої спостерігається майданчик плинності в умовах м'якого 

навантаження і пік-зуб при жорсткому навантаженні. Теорія побудована на 

основі припущення, що різке падіння напруження на піку-зубі викликано 

розм’якшенням, пов'язаним зі звільненням дислокацій. 

6. Розглянуто випадок знакозмінного і циклічного одновісного розтягу-

стиску з акцентом на те, що пластичне деформування на майданчику плинності 

пов'язано з просуванням фронту поширення смуг Людерса (повільної 

пластичної хвилі), що розділяє зразок на область пластичного деформування, в 

якій досягнуто деформацію Людерса, і область пружного деформування. 

Запропонований варіант теорії течії з комбінованим зміцненням для матеріалів 

з майданчиком плинності якісно відповідає експериментальним даним.  

7. Встановлено, що пластичне деформування при знакозмінному 

навантажені виникає при напруженнях менших, ніж стан плинності на 

майданчику плинності. 

8. Запропоновано модель двовимірної пластичної деформації для 

матеріалу з майданчиком плинності, в межах якої розв'язано задачі розвитку 

повільних хвиль при одноосьовому розтягуванні смуги, чистому згині балки та 

деформації труби під дією внутрішнього тиску.  
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