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ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ 

Обґрунтування вибору теми дослідження. Механіка матеріалів з 

майданчиком плинності, для яких притаманне явище локалізації пластичної 

деформації, є галуззю, що розвивається з 1960-х рр. Теоретичні та експериментальні 

дослідження цього класу матеріалів дозволять розширити сфери їх застосування. 

Актуальність таких досліджень зумовлена й вимогами до сучасних технічних 

рішень, зокрема щодо підвищеної стійкості до знакозмінних і вібраційних 

навантажень, більшої здатності до пластичної деформації без руйнування, ніж у 

матеріалів, що зазвичай використовуються для забезпечення міцності та цілісності 

конструкцій. Саме наявність двох стійких форм рівноваги та візуально помітного 

настання пластичної течії дозволила широко використовувати ці матеріали в таких 

галузях, як супутникобудування, медичні технології, конструювання датчиків. До 

таких матеріалів відносяться матеріали з пам’яттю форми, наприклад, нітінол 

(нікелід титану NiTi) та сплави на нікелю і марганцю (FeNiCoAl, CuAlMn, 

FeMnAlNi). 

У будівельній галузі клас матеріалів з майданчиком плинності 

використовується, починаючи з 1990-х рр. Ці матеріали, незважаючи навіть на їхню 

низьку, порівняно зі сталями, несучу здатність, мають такі переваги, як стійкість до 

періодичних, знакозмінних навантажень, вібрацій, легкість, корозійну стійкість, 

набагато більшу межу руйнування в стані пластичності. Ці характеристики роблять 

їх придатними для застосувань, пов’язаних із реконструкцією та мінімізацією 

ризиків. 

На практиці матеріали з майданчиком плинності знайшли застосування, 

зокрема в будівельній галузі, машинобудуванні, металургії та в області досліджень 

матеріалів. Як приклад, можливе покращення сейсмічних показників будівель 

шляхом додавання елементів із матеріалів досліджуваного класу до основної 

надміцної конструкції із звичайних матеріалів, яка має витримувати перші основні 

поштовхи. Додавання елементів з описаних матеріалів може суттєво підвищити 

ресурс стійкості будівель до повторних поштовхів (афтершоків), які хоча і мають 

меншу амплітуду та енергію, можуть характеризуватися більшою частотою і 

продовжувати знижувати несучу здатність основної конструкції. 

Таким чином, саме описані відмінності матеріалів з майданчиком плинності 

від традиційних конструкційних матеріалів відкривають можливості їх застосування 

в нетипових випадках. Це зумовлює необхідність проведення більш детальних 

досліджень в межах будівельної механіки для глибшого розуміння механічних 

процесів, теоретичного осмислення та моделювання, заснованого на точних 

математичних моделях. 

Експериментально встановлено, що при розтягуванні плоского зразка з м'якої 

сталі на його полірованій поверхні утворюються тонкі, неясно видимі лінії, що 

проходять під деяким кутом до напрямку розтягування. Ці лінії відомі під назвою 

ліній Людерса. Вони з'являються в момент падіння навантаження на межі плинності 

і поширюються по довжині стрижня. Для великої кількості конструкційних 

матеріалів, таких як сталі та сплави, поява ліній означає наближення втрати стійкості 

та стану передруйнування. Спостереження за появою і поширенням цих ліній на 

поверхні сталевих зразків дають цінну інформацію про характер явищ, що 
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відбуваються в структурі матеріалу на початку пластичної деформації. Знання цієї 

інформації дає можливість більш точно описати поведінку матеріалів перед втратою 

конструкційної стійкості.  

Опису цих явищ в сучасній літературі присвячено багато робіт. У них зазвичай 

розглядаються модельні задачі для деяких станів матеріалу та чисельні моделі, що 

спрямовані на дослідження поведінки стандартних конструкційних елементів, таких 

як балки та тонкостінні труби. Для завершеності аналізу необхідно доопрацювання 

моделей, зокрема процесу розвитку пластичної деформації в точці для матеріалів, які 

мають майданчик плинності. 

Отже, дослідження неоднорідної пластичної деформації на майданчику 

плинності є актуальним і перспективним, що й обумовило вибір теми даної 

дисертаційної роботи. Таке трактування задачі дозволяє отримати реалістичні 

картини розвитку пластичної деформації в одно- та двовимірному випадку. 

Зв'язок роботи з науковими програмами, планами, темами. Дисертаційну 

роботу було виконано у межах індивідуального плану роботи аспіранта та в рамках 

держбюджетної теми № 1-301-15 «Розробка методик розв’язку фундаментальних 

задач міцності та руйнування кусково-однорідних тіл, скомпонованих з 

інтелектуальних матеріалів» (№ ДР 015U002393). 

Мета і задачі дослідження. Мета роботи полягає у розробленні 

розрахункового апарату та встановленні закономірностей явища локалізації 

пластичної деформації одно- та двовимірних конструкційних елементів з 

майданчиком плинності, а також теоретичне обґрунтування виникнення та розвитку 

ліній Людерса. 

Для досягнення цієї мети було потрібно вирішити такі задачі: 

− провести аналіз і класифікацію наявних підходів до моделювання 

поведінки матеріалу на майданчику плинності; 

− побудувати розв’язки задач про деформацію матеріалів у стані плинності з 

утворенням та пересуванням смуг розриву деформації; 

− сформулювати критерій переміщення смуги зсуву; 

− розробити модель переміщень смуги зсуву і утворення системи смуг для 

матеріалів, що зміцнюються при досягненні граничного стану. 

Об'єктом дослідження є процес пластичного деформування одно- та 

двовимірних конструкційних елементів з майданчиком плинності. 

Предметом дослідження є моделі і задачі локалізації пластичної деформації 

одно- та двовимірних конструкційних елементів з майданчиком плинності. 

Методи дослідження. Математичну модель матеріалу з майданчиком 

плинності, що знаходиться у пластичному стані, побудовано з використанням 

представлень полоси локалізації як полоси зсуву та розриву переміщень з 

використанням функції Йоффе та розв’язку задачі Йоффе. Чисельна реалізація 

запропонованих алгоритмів здійснена на мові програмування SciLab для 

одновимірних задач та у чисельному пакеті Simulia ABAQUS Learning Edition з 

використанням методу скінченних елементів для двовимірних задач. 

Наукова новизна отриманих результатів полягає у такому: 
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Вперше: 

1) побудовано математичну модель одновимірної пластичної деформації для 

матеріалу з майданчиком плинності, що має такі особливості: врахування параметру 

часу та розбіжності між станом напружено-деформованого стану у точці та у зразку 

в цілому;  

2) задачу руху лінії розриву деформації вздовж фронту хвилі пластичної 

деформації зведено до задачі Йоффе, що є подальшим розвитком розв’язків задач 

динаміки за допомогою функції Йоффе. Функцію Йоффе, що зазвичай 

використовується у математичних моделях розвитку тріщин у деяких окремих типах 

матеріалів, було використано для розв’язку задач теорії пластичності після 

обґрунтування подібності деяких процесів у тріщинах моделі Йоффе та у фронті 

пластичної локалізації; 

3) отримано розв’язок задачі Йоффе у формі співвідношення між швидкістю 

руху розриву уздовж фронту хвилі та відношенням розміру зерна до розміру лінії 

розриву, що дозволило визначити швидкість руху розриву для матеріалу; 

4) в результаті розв’язку задач Йоффе встановлено залежність швидкості руху 

лінії розриву деформації від її довжини, що дозволило здобути уточнення формули 

для швидкості фронту; 

5) побудовано чисельний розв'язок задач про розвиток фронту пластичної 

деформації в трубі при внутрішньому тиску та полоси при чистому згині. 

Удосконалено: 

6) модель пластичного деформування при знакозмінних та циклічних 

навантаженнях на основі нової теорії течії з комбінованим зміцненням, яка дозволяє 

описувати майданчик плинності та його особливості при знакозмінному 

навантаженні. 

Дістали подальший розвиток: 

7) моделі пластичної деформації у станах перед втратою стійкості та 

руйнуванням, до яких було додано параметр часу, що дозволяє описувати динамічні 

процеси. За допомогою такої моделі розглянуто задачу розповсюдження фронту 

хвилі пластичної деформації та встановлено швидкість розповсюдження фронту. 

Достовірність наукових положень і висновків дисертаційної роботи. 

Достовірність отриманих автором результатів забезпечується строгими 

математичними постановками та викладками; використанням відомих апробованих 

моделей теорій пластичності; математичним обґрунтуванням чисельних алгоритмів, 

зокрема методу скінченних елементів; узгодженням розв’язків із відомими з 

літературних джерел, отриманими за допомогою інших методів, зокрема збігом з 

відомими експериментальними даними; відповідністю результатів існуючим у 

теоріях пластичної течії науковим уявленням. 

Практичне значення отриманих результатів полягає в можливості 

використання запропонованих методик для вивчення явища локалізації пластичної 

деформації та розповсюдження фронту пластичної деформації для матеріалів з 

майданчиком плинності та оцінки швидкості розвитку смуги пластичної локалізації. 

Результати, отримані у роботі, можуть бути використані для опису поведінки ряду 

матеріалів з майданчиком плинності в будівельній галузі, металургії, 

машинобудуванні тощо. Розроблені методики дозволяють прогнозувати поведінку 



4 

матеріалів перед втратою конструкційної стійкості та розраховувати оцінку стану 

конструкційних елементів перед руйнуванням. 

Результати роботи застосовуються у навчальному процесі Дніпровського 

національного університету імені Олеся Гончара під час викладання навчальних 

дисциплін «Опір матеріалів», «Моделі і методи інженерії міцності», «Механіка 

матеріалів в інженерних задачах», «Моделі і методи теорії пластичності», та були 

впроваджені в низці досліджень в ДП «Дніпровський проектний інститут», які 

присвячені вирішенню актуальних проблем використання новітніх класів матеріалів 

у будівельній галузі та реконструкції. 

Публікації та особистий внесок здобувача. За темою дисертації 

опубліковано 11 наукових праць, з них: 5 наукових статей – у виданнях, що увійшли 

до переліку наукових фахових видань України з технічних наук; 1 стаття – у 

фаховому виданні з фізико-математичних наук; 4 тези – в матеріалах наукових 

конференцій; 1 стаття – у закордонному міжнародному періодичному виданні, що 

індексується в наукометричній базі Scopus. 

Апробація матеріалів дисертації. Окремі результати дисертаційної роботи 

доповідалися на: 

 V Міжнародній конференції «Нелінійна динаміка-2016», Харків, 27-

30 вересня 2016 р.; 

 VI Міжнародній науково-технічній конференції «Актуальні проблеми 

прикладної механіки та міцності конструкцій», Запоріжжя, 25-28 травня 2017 р.; 

 Міжнародній науковій конференції «Сучасні проблеми механіки та 

математики», Львів, 22–25 травня 2018 р.; 

 Міжнародній науковій конференції «Математичні проблеми технічної 

механіки та прикладної математики-2019», Кам'янське, 15-18 квітня 2019 р. 

 Міжнародній науковій конференції «Математичні проблеми технічної 

механіки та прикладної математики-2025», Дніпро, 15-17 квітня 2025 р. 

У цілому дисертація обговорювалася на: 

 науковому семінарі кафедри теоретичної та комп'ютерної механіки 

Дніпровського національного університету імені Олеся Гончара, 2025 р.; 

 розширеному науково-технічному семінарі «Проблеми нелінійної механіки» 

при кафедрі будівельної і теоретичної механіки та опору матеріалів Навчально-

наукового інституту «Придніпровська державна академія будівництва та 

архітектури» Українського державного університету науки і технологій, 2025 р. 

Роботи [2, 4, 9, 10] опубліковані без співавторів. В роботах [1, 7, 8, 11] 

постановка задачі про опис локалізації пластичної деформації за допомогою 

розв’язків задачі про рух тріщини II типу та її вирішення належать д.ф.-м.н., 

професору Ю. А. Чернякову, обговорення результатів та формулювання висновків 

проведені разом з ним. Здобувачеві належить побудова розв’язку, отримання і 

обробка результатів. В роботах [5, 6] постановки задач, їх розв’язання, чисельне 

моделювання та обробка результатів належать здобувачеві, обговорення результатів 

та формулювання висновків проведено разом з к.ф.-м.н., доц. Т. В. Ходанен. В роботі 

[3] формулюванні задачі про процес пластичної деформації у лінії локалізації, її 

розв’язання, чисельне моделювання та обробка результатів належать здобувачеві, 
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обговорення результатів та формулювання висновків проведено разом з д.ф.-м.н., 

проф. А. Є. Шевельовою та к.ф.-м.н. А. Г. Шевченком. 

Структура та обсяг дисертації. Дисертація складається з анотації, вступу, 

чотирьох розділів, висновків, списку використаних джерел та чотирьох додатків. 

Загальний обсяг дисертації становить 146 сторінок. Дисертація містить 45 рисунків, 

2 таблиці та список використаних джерел зі 138 найменувань, а основний текст 

складає 110 сторінок. 

ОСНОВНИЙ ЗМІСТ РОБОТИ 

У вступі обґрунтовано актуальність теми дисертаційної роботи, окреслено 

зв’язок дисертації з науково-дослідними темами; сформульовано мету і задачі 

досліджень, висвітлено наукову новизну, достовірність та практичне значення 

отриманих результатів, подано інформацію про публікації за темою дисертації та 

особистий внесок здобувача у них, апробацію результатів дисертації, її структуру та 

обсяг.  

У першому розділі роботи міститься огляд відомих попередніх досліджень 

механіки пластичності та плинності. Задачі механіки пластичності та теорії 

плинності розглядалися у роботах Г. І. Баренблатта, С. О. Христиановича, 

В. М. Кукуджанова, Ю. А. Чернякова, П. О. Стеблянка, B. A. Bilby, A. H. Cottrell, 

Z. P. Bažant, W. Lüders, A. Nadai, W. G. Johnston, G. Hahn, E. O. Hall, J. Shaw, 

E. C. Aifantis, S. Kyriakides, F. Yoshida, A. Needleman, J. Zhang, Y. Jiang, L. Sluys, 

N. Dowling, K. Broberg, E. H. Yoffe. 

Наведений в роботі огляд досліджень свідчить про те, що поведінку матеріалу 

на майданчику плинності вивчено досить докладно в рамках моделі теорії 

пластичності. Також існує достатня кількість експериментальних даних, що дозволяє 

розглядати у деталях процес переходу пружного стану у пластичний. Але поясненню 

фізичних властивостей матеріалів та явищ, що відбуваються за значень напружень 

між межею пружності та початком зміцнення, було приділено недостатньо уваги. 

Такі характеристики переходу у пластичний стан як наявність повільної пластичної 

хвилі сталої швидкості та її зв’язок з утворенням смуг Людерса розглядаються лише 

як зв’язані фізичні особливості. З огляду на це, випливає важливість вивчення 

процесу переходу у пластичний стан для матеріалів з майданчиком плинності, а 

також розроблення ефективної методики розв’язання задач теорії пластичності. 

У другому розділі розглянуто задачу пластичної деформації стрижня, діаграма 

напружень-деформацій якого відрізняється від діаграми для матеріалу (рис. 1). Тобто 

поведінка при м’якому та жорсткому навантаженні демонструє різні шляхи переходу 

у стан зміцнення після подолання межі пластичності. 

Розглядається стрижень постійного поперечного перерізу, один кінець якого 

закріплений, а на іншому задано переміщення з постійною швидкістю V  (жорстке 

навантаження, рис. 2). У пружному і в пружно-пластичному режимі, за умови, що 

матеріал зміцнюється, розподіл деформації в стрижні залишається однорідним. 

Якщо ж матеріал розм’якшується, то визначальні рівняння припускають безліч 

рішень з неоднорідним розподілом деформації. Область пластичної локалізації може 

бути як завгодно малою, і стрижень може вичерпати несучу здатність при достатньо 

малій дисипації. 
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Рисунок 1 – Кусково-лінійна діаграма σ–ε одноосьового 

розтягування матеріала в точці 
 
 

 
Рисунок 2 – Області пластичності (I), пружності (III) та 

плинності (II) у стрижні  

Як зазначалося вище, пластична деформація розвивається за рахунок 

зростання протяжності пластичної області I довжини l, в якій деформація досягла 

величини 
L , як показано на рис. 2. Таке зростання відбувається на ділянці стрижня 

II довжиною l d  . На ділянці II здійснюється перехід з точки A на діаграмі 

матеріалу до точки D. Величина d є параметром матеріалу і залежить від 

мікроструктури (наприклад, від розміру зерна). В області III має місце пружне 

деформування. Коли область II досягає кінця стрижня, а протяжність області III стає 

нульовою, здійснюється перехід до ділянки зміцнення.  

Опишемо квазістатичний процес деформування стрижня, при якому його 

довжина збільшилася на величину u V t  , де V – швидкість переміщення кінця 

стрижня, t  – час. При переміщенні кінця стрижня на відстань u  до пластичної 

області додається ділянка довжиною l , яка перейде з пружного стану в пластичний. 

Визначимо збільшення довжини всього стрижня u  через збільшення довжини 

кожної області I-III:  

  .I II IIIV t u u u u         (1) 

Зміна довжини пластичної області буде залежати від того, спадають чи 
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зростають напруження в області I:  

  
 

 

/ , 0,

/ , 0,
I

l l H
u

l l E

  


  

  
 

 
 (2) 

де E – модуль пружності, H – модуль зміцнення в точці B діаграми матеріалу. Для 

області II, де відбувається пластична течія:  

  ,II L L Pu l c t       (3) 

де 
Pc  – швидкість поширення фронту пластичної деформації в стрижні. Приріст 

довжини пружної області має вигляд:  

    / ,IIIu L l E    (4) 

де   – зміна напружень у стрижні.  

Підставляючи (2)-(4) у (1) отримаємо:  

     / / .L Pl l E c t L l E V t            
Звідси знаходимо вираз для зміни напружень у стрижні за час t , виконавши заміну 

L l  на L  з тих міркувань, що довжина l  є набагато меншою за довжину всього 

зразка L :  

    .L P

E
V c t

L
     (5) 

Оскільки описаний процес локалізації майданчику плинності на ділянці 

ширини d займає деякий час t , то при розгляді експерименту зі стрижнем доцільно 

визначити швидкість руху пластичного фронту V d t . При достатньому розмірі 

локалізованої області d по відношенню до довжини стрижня L можна спостерігати 

збільшення кожної окремої ділянки до області пластичності у вигляді періодичних 

коливань на діаграмі майданчику плинності зразка (рис. 3).  

 
Рисунок 3 – Коливання напружень на майданчику плинності 

при одноосьовій деформації стрижня  

Якщо на майданчику плинності зразка схематично виділити коливання, то 

кожному приросту ділянки локалізації до пластичної області відповідає  

шлях A-B-C на рис. 3, який привносить свою частину пластичної деформації  

Людерса 
L . Перехід A-B на діаграмі відповідає за розм’якшення кожної 

прирощеної локалізованої ділянки. Модуль розм’якшення K тут 

дорівнює  0K dR d . Перехід B-C на діаграмі відповідає зміцненню 

елементарної ділянки стрижня, модуль зміцнення дорівнює модулю зміцнення 

зразка після досягнення точки D і дорівнює  LH dR d  .  
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Для проведення аналогій між отриманими результатами та фізичними 

параметрами, які можна отримати в експерименті, такі як наявність переходу між 

пластичною та пружною областями, досліджено поширення повільної пластичної 

хвилі.  

Розглянуто процес одноосьового розтягу стрижня довжини L (рис. 4). Матеріал 

стрижня має «пік-зуб» на діаграмі напружень-деформацій. Нехай спочатку стрижень 

знаходився в попередньо-напруженому стані, кожна точка стрижня знаходиться на 

межі пружності (
T  ). При довантажуванні стрижня весь матеріал не може 

перейти в пластичний стан одночасно у зв'язку з наявністю ділянки розм’якшення. 

Перехід в пластичний стан станеться в деякій області, яка почне рух по матеріалу 

уздовж стрижня з певною швидкістю V, значення якої є характеристикою матеріалу і 

не залежить від умов навантаження стрижня. У стрижні утворюються три чітко 

виражені області: 1) область пружного стану, де 
E  ; 2) область пластичного 

стану, 
T  ; 3) область локалізації ширини δ, яка забезпечує розрив між пружним і 

пластичним станом. У масштабі всього зразка це призводить до відмінності діаграми 

для реального зразка від діаграми матеріалу.  

 
Рисунок 4 – Одновимірний стрижень під дією розтягувальних зусиль  

Параметри локалізації, такі як ширина ділянки δ і швидкість руху границі VL, 

залежать від мікроструктури матеріалу і визначаються експериментально. 

Напружено-деформований стан стрижня визначається шляхом формулювання 

співвідношення стану окремо для пружної та пластичної областей, а також завдання 

граничних умов для області локалізації з урахуванням того, що її границя рухома.  

Умови для пружної та пластичної областей:  

    0 0

, ,

, , , ,

1 1
0, 0,

T T

el el L

tt xx tt xx

x x t x x t

u Eu u Hu

   

     

 

 
  
  

      
 
    
  

  (6) 

де   – щільність матеріалу, 
L  – деформація Людерса,  0x t  – координата 

локалізованої ділянки в момент часу t, E – пружний модуль для області пружності, H 

– пластичний модуль для пластичної області. Початкові умови для стрижня:  

 
 

 

,0 0,

,0 0.

u x

u x




  (7) 

Граничні умови для стрижня:  
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 

 

  0

0, 0, 0,

, 0, 0,

, , 0.

u t t

L t t

L t q t





 

 

 

  (8) 

На ділянці локалізації задається обмеження для поля деформації p

loc :  

 0 .p

loc L     (9) 

Умови на границі ділянки локалізації:  

 
 

 

0

0

, ,

, .

el

el L

x x t

x x t

  

  

  

  
  (10) 

Хвильове рівняння для пружної та пластичної областей має вигляд:  

 
2

1
0, 1,2,tt xx

k

u u k
c

     (11) 

де 1k   відповідає пружній хвилі, а 2k   – пластичній хвилі, 
kc  – швидкість хвилі у 

пружній та пластичній областях відповідно. Розв'язки цих рівнянь складаються з 

двох функцій 
kf  і 

kg :  

      , , 1,2.k k k k ku x t f x c t g x c t k       (12) 

Виконаємо заміну змінних:  

  , , 1,2,k k k

k k

L x L x
u x t f t g t k

c c

    
       

   
  (13) 

де 
kf  – напівхвилі, які поширюються вліво, а 

kg  – відбиті хвилі. Розв’язок для 
kf  

при заданих граничних умовах має вигляд:  

   
  

  0 , 1,2,
k

k k k

k

h t L x c
f t L x c q t L x c k

c

 
        (14) 

де  h t  – функція Гевісайда. Розв’язок для 
kg  доповнює розв’язок для поля 

переміщень:  

 

 
  

  

  
  

0

0

,

, 1,2.

k

k k

k

k

k

k

h t L x c
u x t q t L x c

c

h t L x c
q t L x c k

c





 
   

 
   

  (15) 

Поле деформацій du dx   має вигляд:  

  
     0 0

, , 1,2,
el el

k

k k

q h t L x c q h t L x c
x t k

E E


   
     (16) 

де 
kE  – модуль пружності E для пружної області і пластичний модуль H для області 

пластичності.  

Якщо плинність починається після проходу відбитої хвилі (рис. 5), то 

непружна поведінка області локалізації δ стає визначеною. Рівняння стану стає 
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еліптичним, це означає, що зона локалізації не збільшується і залишається 

нескінченно малою ( 0  ). Введемо умову для переміщень в області локалізації:  

     0 0, , .p p Lx u x t x x x x          (17) 

Для решти стрижня, що складається із пружної та пластичної областей отримаємо:  

 
  

     0, , 1,2,
k

k k k k

k

h t L x c
u x t q t L x c g t L x c k

c

 
         (18) 

де вираз для відбитої хвилі 
1g  для пружної і 

2g  для пластичної областей 

залишаються невідомими. Поля деформацій приймають вигляд: 

  
  

  
0 1

, , 1,2.
k k

k

k k k

q h t L x c dg
x t k

E c d t L x c


 
  

 
  (19) 

 
Рисунок 5 – Поширення області локалізації під дією пружної хвилі  

Таким чином, були визначені умови в усіх областях стрижня. Для розв'язку 

поставленої задачі необхідно використовувати узгодженість полів напружень і 

деформацій на границях області локалізації. Використовуючи умови (17) і (18), а 

також беручи умову узгодженості полів деформації на границі пружної і 

локалізованої областей, отримаємо вираз для допустимого стрибка на границях 

локалізованої області:  

  0 ,L     (20) 

або для вираження похідної функції напружень за деформаціями:  

 0 ,E H




 
    

  (21) 

де квадратні дужки  ...  позначають стрибок. Співвідношення для стрибка по 

напруженням і деформаціям має вигляд:  

    LV    або  2 1 2 1LV       . (22) 

З експериментальних даних відомо, що швидкість руху фронту локалізації 0LV  , і, 

отже, має місце стрибок в полі деформацій. Швидкість руху фронту локалізації 
LV  у 

співвідношенні (22) є невідомою. Для її визначення необхідно врахувати рівняння 

руху:  
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  2 1

1
.L

LV
     (23) 

Якщо задати швидкість VL, можна визначити стрибок поля напружень. 

Невідома швидкість може бути визначена за допомогою експериментальних 

досліджень. Так для сталі-25 вона дорівнює 10
-5

 м/с. З іншого боку, можна отримати 

оцінки цієї швидкості, виходячи з наступних міркувань. 

При переході пластичної хвилі через локалізовану область відбувається 

«вирівнювання» напружено-деформованого стану в локалізованій  

області   (рис. 4). Таким чином, область A стає частиною пластичної області, в той 

же час область B ширини δ на пружній ділянці стає новою областю локалізації. 

Вирівнювання стану в області A відбувається за час ' Lt V . Приріст області B 

також відбувається за час 't . Таким чином, на переміщення локалізованої області 

потрібен час 
0 't t . За цей же час поздовжня хвиля проходить відстань, що дорівнює 

довжині стрижня, тобто 
0 1t L c . Звідси отримаємо співвідношення:  

 
1

1
.

2

LLV

c


  (24) 

Ця формула співпадає з відомими емпіричними співвідношеннями. Проведена 

оцінка дає підстави вважати, що запропонована модель пластичної течії дозволяє 

описати уривчастість пластичної течії матеріалу з майданчиком плинності при 

жорсткому навантаженні.  

У третьому розділі досліджено питання розвитку смуги розриву деформації, 

що дозволяє визначити швидкість розповсюдження фронту пластичної деформації.  

Задача руху смуги зсуву зведена до задачі Йоффе про напружено-

деформований стан смуги зсуву (рис. 6), помноженого на параметр  IIY  , що 

називається функцією Йоффе.  

 
Рисунок 6 –Задача Йоффе для розвитку лінії зсуву 

Параметр   є відношенням швидкості поширення смуги зсуву до швидкості 

поширення поздовжньої хвилі в матеріалі: 
pV c  . З принципу суперпозиції 

випливає, що реакція від дотичних напружень  0

xy xy x   на 0Y   визначається зі 

статичного розв'язку від впливу дотичних напружень  0

xy xy x  , помножених на 

 IIY  . 

Виходячи з представленої вище моделі, на поверхнях розриву деформацій 

маємо:  
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0.xy   (25) 

Оскільки рівняння залишаються незмінними, то розв’язок в нашому випадку 

може бути отримано безпосередньо з результатів задачі з проковзуванням. Таким 

чином, відомі розв’язки задачі для руху тріщини змінюються на  

   0 0xy xy

X a

X a
    

  


 для X a , (26) 

  
   

 
0

22 1

xy IIYu a X

x a Xk

  






 


 

 для X a , (27) 

  
   

 
0

2
.

2 1

xy IIaY

k

   



 
 


 (28) 

Тут використовується статичний розв'язок, отриманий Баренблаттом, помножений 

на функцію Йоффе  IIY  , яка в даному випадку має вигляд: 

   
 

 

2 2 2 22 1
.II

k k k
Y

R

 




 
  (29) 

Модель придатна для опису як плоского напруженого стану, так і плоского 

деформованого стану. Тип моделі обумовлюється вибором параметра k, який 

визначається як відношення між швидкостями S- та P- хвиль:  

  
   

 
2

1 2 / 2 1 для плоского деформованого стану,

1 / 2 для плоского напруженого стану.
k

 



  
 


 (30) 

У (29)  R   позначена функція Релея:  

       
2

3 2 2 2 2 2 44 1 2 , ,P SR k k k k R a a          (31) 

де 
Sa  та 

Pa  – безрозмірні параметри швидкості S- та P- хвилі у матеріалі відповідно  

  
21 , 0P Pa a   , (32) 

  
2 21 / , 0S Sa k a   . (33) 

Для розглянутої задачі має місце рівність  

  

 

 
 

0

2 2 2

0 2
3 2 2 2 2 2

/ / /

/ 1 .
2 1 2

L L

xy

h a h a

k k

k k k

   

 
  

  



  


 

   

 (34) 

З рівняння (26) випливає, що 

   02 .II xyK a     (35) 

Для лінії розриву II типу, яка повільно рухається, була використана модель 

області процесу Баренблатта. Отримані результати будуть використовуватися тут 

для динамічного дорелеєвського випадку. Довжина тріщини (включаючи область 

процесу Баренблатта) 2a, і напруження зсуву на 0Y  :  
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 
0

0

для ,

для ,

P

xy

xy P

a X a r

X a r X a






   
 

  
 (36) 

де 
Pr  – довжина області розвитку тріщини,  0

xy X  – значення за умови гладкого 

закриття,  

  
 

 
0

0

0
2 2

1
.

P

a xy

xy
a r

d

a

   
  

 






 


  (37) 

Для динамічного дорелеєвського випадку використання результатів для статичного 

розв'язку, який отриманий у припущенні про нульову енергію «заліковування» (щоб 

при цьому не розглядати процеси в хвості тріщини), дає  

  

 

 

 

 

2 2

2 2

02 2
0

2 2
для ,

P

a xy

xy
a

a xy

f
a r

dX X a

X a X

dX X a
X a

X a X

  


  

   


  






 

 

     
 





 (38) 

  
 

 
 

 

02 2
0

2 2 22 1 P

a xyII

a r

a X Yu

x k a X

  

   





   
   

  для ,X a  (39) 

для 0Y  , та, якщо 
Pr a , ковзання на кожній стороні тріщини буде  

  
 

 2
.

22 1

II IIT Y a

k




 


 (40) 

Рівність (40) стає точною у граничному випадку 0pr a   і потім збігається 

з (27), оскільки 
IIT  – модуль зчеплення Баренблатта для тріщини II типу  

   02 2 .II II xyT K a       (41) 

Значення 
IIT , як і 

IIK  під час динамічного поширення тріщини залежить від   і, 

ймовірно, також від історії поширення тріщини.  

Рівняння (41) показує, що довжина області ковзання  

  

 

2

2
2

0

2 ,II

xy

T
a

  



 (42) 

і ковзання на краях тріщини 

  
 

   

2

2

0

.
4 1

II II

xy

T Y

k



   
 

 
 (43) 

Вирази (42) і (43) залежать від модуля зчеплення 
IIT , перенапруження 0xy    і 

швидкості. При повільному поширенні лінії ковзання довжина її визначена єдиним 

чином, коли 
IIT  і 0xy    відомі. Але в динамічному випадку навіть при єдиному і 

відомому співвідношенні між 
IIT  і швидкістю, отримані рівняння не дають 

визначення швидкості. Довжина тріщини і накопичене ковзання не можуть бути 
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визначені в динамічному випадку з одного тільки відношення стійкого стану: 

історія, в результаті якої досягнуто стійкий стан, також повинна бути відома.  

Дисипація енергії на передньому краї обчислюється таким же чином, як у 

випадку повільного зростання тріщини, але дисипація повної енергії також включає 

енергію тертя уздовж всієї області ковзання. Таким чином, енергетичне розсіювання 

на одиницю області вздовж інтерфейсу, після того, як імпульс односпрямованого 

ковзання пройшов повз, буде,  

  
 

 

2

2
2 .

2 1

II II

f

T YdW

dS k




 
  


 (44) 

Відзначимо, що вираз (44) не містить 
pr . Рівність стає точною у граничному 

випадку 0pr a  . Як буде показано пізніше, відповідний вираз для дисипації енергії 

при дозвуковій швидкості тріщини залежить від 
pr a  і зникає  

при 0pr a  .  

Простий результат отримано для відношення 
prw  між дисипацією енергії в 

області процесу Баренблатта (тобто на передньому краї) і дисипацією повної енергії:  

   0 0/ .pr xyw      (45) 

Якщо ковзання має місце в неоднорідному матеріалі, в якому є слабкою 

взаємодія між берегами тріщини, то нехтувати модулем «заліковування» 
IIH  

неприпустимо. Зміни, необхідні для ненульового значення 
IIH , незначні. Таким 

чином, заміна  II II IIT T H   повинна бути зроблена в рівняннях (40)  

і (42), і заміна  2 2 2

II II IIT T H   в (43) і (44), тоді як (45) залишається без змін. 

Рівняння (41) має бути замінено на  

  2 ,II IIT K  (46) 

   0 2 .II II xyT H a      (47) 

З наведеного на рис. 7 графіку можна зробити висновок, що швидкість 

розповсюдження лінії зсуву V суттєво відрізняється від поздовжньої хвилі у 

матеріалі 
Pc . 

 
Рисунок 7 – Залежність безрозмірної швидкості   від розмірів лінії зсуву 

pr a   
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У четвертому розділі запропоновано варіант теорії течії з комбінованим 

зміцненням для матеріалів з майданчиком плинності.  

Умова плинності приймається у такому вигляді: 

       1 2 0,f R      s α s α  (48) 

де α  – девіатор залишкових напружень, що визначає кінематичне зміцнення, 

 tr / 3 s σ i σ  – девіатор тензора напружень Коші,  R   – функція, яка 

характеризує ізотропне зміцнення та визначає поточний опір руху дислокацій. 

Із урахуванням специфічної поведінки матеріалу на майданчику плинності 

силу опору руху дислокацій  R   представлено в такому вигляді (рис. 8):  

  
1 2( ) ( ) ( ),R R R     (49) 

де  1R   – функція розм’якшення, яка пов'язана зі звільненням дислокацій на 

майданчику плинності, 
2( )R   – функція зміцнення, яка пов'язана з рухом 

дислокацій, причому    1 20 0 SR R    і 
S  – початкова межа плинності. Задамо ці 

функції так:  

  
0( ) , (0) ,k k k k k kR R R R R     (50) 

де 
1 2 10 20, , ,R R R R ,

1 2,   – константи матеріалу. 

 
Рисунок 8 – Функції  R   (суцільна лінія),  1R   (суцільна лінія з точками), 

 2R   (пунктирна лінія). 

Якщо позначити через  / , 0 1l L     відносну довжину пластичної 

області, то значення 0   відповідатиме пружному стану зразка, а 1   означає 

досягнення в усіх точках зразка деформації Людерса 
L . Значення деформації при 

плинності визначається як   LL L P FE    . Після досягнення ділянки 

зміцнення діаграми матеріалу і зразка співпадатимуть. На рис. 8 наведені графіки 

функцій  R  ,  1R  ,  2R   для яких: 
1 4.0  , 

2 2.0  , 
1 0R  , 

2 0.1R  ,  

10 0.04R  , 
20 0.05R  , 

0 0,5  . 

В пункті 4.4 розглянуто знакозмінне навантаження зразка. Для опису 

пластичної деформації зразка при такому навантаженні необхідно визначити 

значення параметра  , при якому починається розвантаження. При навантаженні 

зворотного знаку справедливі формули (48–50), і пластична деформація зворотного 
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знаку починається при напруженнях менших, ніж при прямому навантаженні, 

проявляється ефект Баушінгера. При досягненні верхньої межі плинності триває ріст 

параметра   і пластична течія в точці до досягнення деформації Людерса зворотного 

знаку. Стан зміцнення у зразку досягається, коли поточне значення параметра   стає 

рівним одиниці (рис. 9). Подібна картина спостерігається і при циклічному 

навантаженні (рис. 10). 

 
Рисунок 9 – Діаграма напружень-

деформацій зразка при знакозмінному 

навантажені 

 
Рисунок 10 – Діаграма напружень-

деформацій зразка при циклічному 

навантажені 

У цих випадках майданчик плинності розвивається до виконання умови 

 1.   (51) 

Слід зазначити, що пластична деформація починається до досягнення 

майданчика плинності. 

Наведена на рис. 9 та рис. 10 поведінка матеріалів з майданчиком плинності в 

умовах циклічного навантаження якісно відповідає експериментальним даним. 

Далі розглянуто чистий згин полоси (поздовжнього перерізу, що містить вісь 

балки, симетричної по ширині) постійної висоти h та довжини L  під дією 

згинального моменту M (рис. 11). Механічна поведінка матеріалу полоси задається 

діаграмою з низхідною ділянкою, що слідує безпосередньо за ділянкою пружного 

деформування. Напружено-деформований стан в полосі залишається однорідним до 

тих пір, поки величина напружень в крайніх волокнах (A-A, A'-A', рис. 11) не досягне 

значення верхньої межі плинності 100T   МПа. 

 
Рисунок 11 – Чистий згин полоси під дією згинальних моментів  

Дослідження процесу деформації проводилося з використанням скінченно-

елементної моделі (рис. 12). З огляду на симетрію в моделі враховано тільки 

половину полоси. На осі симетрії полоси введено початкову недосконалість P у 

вигляді скінченного елемента з межею плинності *

T  , що становить 80% від межі 
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плинності всього іншого матеріалу. Таким чином, процес деформації полоси після 

досягнення межі плинності стає неоднорідним.  

 
Рисунок 12 – Скінченно-елементна модель полоси 

Результати моделювання процесу пластичної локалізації при збільшенні 

згинального моменту M представлені на рис. 13, де зображено область в околиці 

вузла початкової недосконалості P . На кожному рисунку представлено область 

розмірами 6,88×5 см, у якої нижня границя співпадає з нейтральною лінією 

(O O  на рис. 11), верхня границя області співпадає з верхньою границею полоси  

( A A  на рис. 11), а ліва границя – з вертикальною віссю симетрії полоси. Таким 

чином, вузол з початковою недосконалістю розташований у верхньому лівому куті. 

Темнішим відтінком позначається область локалізації, а саме вузли, в яких після 

досягнення напруженнями значення 
T  починається процес розм’якшення та 

зниження напружень до 
P  згідно з низхідною ділянкою A P  на діаграмі 

напружень-деформацій (рис. 1). 

   
a b c 

   
d e f 

Рисунок 13 – Результати чисельного моделювання розвитку області локалізації в 

околі початкової недосконалості P  при чистому згині полоси: a – момент, коли 

напруження в елементах верхньої вільної поверхні досягають *

T  (80% від 
T , межа 

для елемента початкової недосконалості); b-f –моменти, коли напруження досягають 

відповідно 84%, 88%, 92%, 96% та 100% від 
T . 
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Коли напруження навколо початкової недосконалості P  досягають значення 
*

T  виникає область локалізації (верхній лівий кут на рис. 13, a). При збільшенні 

згинального моменту область локалізації розширюється у вигляді полоси локалізації 

(рис. 13, b, c), головна вісь якої відхилена по відношенню до вертикалі на кут, 

близький до 35°. Область локалізації продовжує розширюватися від верхньої границі 

вглиб матеріалу у напрямку нейтральної лінії (рис. 13, d, e). Проте лінія локалізації 

не може досягти нейтральної лінії через зниження напружень при віддаленні від 

верхньої границі полоси. 

При подальшому збільшені згинального моменту область локалізації 

розвивається у зворотному напрямку від нейтральної лінії до поверхні (рис. 13, f). На 

рис. 13, f зображено стан області локалізації, коли величини згинального моменту M  

достатньо, щоб всі елементи на верхній границі полоси досягли напружень 
T , і стан 

пластичності став однорідним. Таким чином, стан пластичного шарніра на рис. 13, f, 

викликаний початковою недосконалістю, при чистому згині в полосі досягається 

тоді, коли закінчено процес утворення смуги пластичної локалізації. 

Розглядається також деформація труби діаметром D  з товщиною стінки d  під 

дією внутрішнього тиску q  (рис. 14). Механічна поведінка матеріалу труби задається 

діаграмою на рис. 1 з низхідною ділянкою, що слідує безпосередньо за ділянкою 

пружного деформування. Напружено-деформований стан в поперечному перерізі 

залишається однорідним до тих пір, поки величина напружень не досягне значення 

верхньої межі плинності 100T   МПа.  

 

Рисунок 14 – Постановка задачі про пластичну деформацію 

труби під дією внутрішнього тиску q 

Для дослідження процесу деформації використовується скінченно-елементна 

модель (рис. 15). З огляду на симетрію в моделі розглядається тільки радіальний 

сектор труби. На внутрішній поверхні труби введена початкова недосконалість P  у 

вигляді скінченого елемента з межею плинності *

T , що становить 80% межі 

плинності іншого матеріалу. Таким чином, розподіл деформацій після досягнення 
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межі плинності стає неоднорідним, що необхідно для утворення пластичної 

локалізації. 

 
Рисунок 15 – Скінченно-елементна модель частини труби 

під дією внутрішнього тиску 

Результати моделювання процесу деформації труби в околі початкової 

недосконалості P  при різних значеннях внутрішнього тиску q  представлені на 

рис. 16. На кожному рисунку зображено область розмірами 5,5×2,75 см в околиці 

елемента початкової недосконалості P . Нижній край являє собою внутрішню 

поверхню труби, яка знаходиться під дією тиску. Темним кольором позначається 

область локалізації, а саме вузли скінченно-елементної моделі, де після досягнення 

напруженнями значення 
T  починається процес розм’якшення, та напруження 

знижуються до величини 
P . 

 

   
a b c 

   
d e f 

Рисунок 16 – Результати чисельного моделювання розвитку області 

пластичної локалізації в трубі в околі початкової недосконалості P при збільшені 

внутрішнього тиску q: a – момент, коли радіальні напруження в елементах 

внутрішньої поверхні досягають *

T  (80% від 
T , межа для елемента початкової 

недосконалості); b-f –моменти коли напруження досягають відповідно 84%, 88%, 

92%, 96% та 100% від 
T . 

При досягненні напруженнями в околиці початкової недосконалості P 

значення *

T  виникають дві області локалізації, радіально симетричні відносно 

радіусу труби, що проходить через точку P (рис. 16, a). На відміну від випадку 
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чистого згину полоси (рис. 13) області локалізації не охоплюють елементи на 

внутрішній поверхні труби через особливості моделювання задачі, зокрема через те, 

що на внутрішній поверхні задано граничні умови. При збільшенні внутрішнього 

тиску області локалізації розширюються (рис. 16, b-e), але на відміну від 

попереднього випадку, область локалізації розвивається не вздовж прямої лінії, а 

вздовж дуги. На рис. 16, f зображено стан області локалізації, коли величини 

внутрішнього тиску q  достатньо, щоб всі елементи на внутрішній границі труби 

досягли напружень 
T , і стан пластичності став однорідним. 

ВИСНОВКИ 

У дисертації зроблено теоретичне узагальнення і запропоновано нове 

роз’яснення науково-прикладної задачі щодо застосування аналітичних методів і 

чисельних моделей, що дозволяють описувати поведінку матеріалів з майданчиком 

плинності, досліджувати процеси втрати стійкості, будувати моделі вичерпання 

несучої здатності і втрати стійкості при знакозмінному навантаженні та у стані 

пластичності. Основні результати дисертаційної роботи полягають у такому: 

1. Запропоновано модель одновимірної пластичної деформації для матеріалу з 

майданчиком плинності. В рамках цієї моделі розглянуто задачу про рух пластичної 

хвилі та сформульовано критерій переміщення смуги зсуву. Розроблено модель 

переміщень смуги зсуву і утворення системи смуг для матеріалів, що зміцнюються 

при досягненні граничного стану.  

2. З використанням відомих опублікованих даних про стандартні експерименти 

над типовими зразками, виготовленими з матеріалів, що досліджуються, отримано 

фізичні параметри матеріалу. При підстановці цих параметрів у сформульовані 

співвідношення визначено залежність між швидкістю повільної пластичної хвилі із 

розміром зерна та фізичними розмірами конструкційного елемента. 

3. У результаті розв'язання задачі Йоффе отримано співвідношення між 

швидкістю руху розриву уздовж фронту хвилі та відношенням розміру зерна до 

розміру лінії розриву, що дозволило визначити швидкість руху розриву для 

матеріалу. Встановлено, що швидкість руху розриву уздовж смуги ковзання менша 

за пружну швидкість.  

4. Запропоновано розв'язок розвитку ліній ковзання в умовах складного зсуву. 

Розв'язок знайдено шляхом введення в рівняння для стаціонарної задачі функцій 

спеціального виду, які вносять в рівняння стану параметр часу. Запропонований 

підхід в перспективі можна застосувати до цілого ряду задач динаміки смуг 

локалізації та для розгляду розвитку смуги зсуву під дією зовнішніх навантажень 

іншого характеру. 

5. Запропоновано узагальнений варіант теорії течії з комбінованим зміцненням 

для опису деформування матеріалу, на діаграмі одновісного розтягування якої 

спостерігається майданчик плинності в умовах м'якого навантаження і пік-зуб при 

жорсткому навантаженні. Теорія побудована на основі припущення, що різке 

падіння напруження на піку-зубі викликано розм’якшенням, пов'язаним зі 

звільненням дислокацій. 

6. Розглянуто випадок знакозмінного і циклічного одновісного розтягу-стиску з 

акцентом на те, що пластичне деформування на майданчику плинності пов'язано з 
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просуванням фронту поширення смуг Людерса (повільної пластичної хвилі), що 

розділяє зразок на область пластичного деформування, в якій досягнуто деформацію 

Людерса, і область пружного деформування. Запропонований варіант теорії течії з 

комбінованим зміцненням для матеріалів з майданчиком плинності якісно відповідає 

експериментальним даним. 

7. Встановлено, що пластичне деформування при знакозмінному навантажені 

виникає при напруженнях менших, ніж стан плинності на майданчику плинності.  

8. Запропоновано модель двовимірної пластичної деформації для матеріалу з 

майданчиком плинності, в межах якої розв'язано задачі розвитку повільних хвиль 

при одноосьовому розтягуванні смуги, чистому згині балки та деформації труби під 

дією внутрішнього тиску. 
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Лабібов Р. Р. Особливості пластичного деформування одно- та 

двовимірних конструкційних елементів з майданчиком плинності. – 
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Дисертація на здобуття наукового ступеня кандидата технічних наук за 

спеціальністю 05.23.17 «Будівельна механіка» (19 – Архітектура та будівництво). – 
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державний університет науки і технологій, ННІ «Придніпровська державна академія 

будівництва та архітектури» Міністерства освіти і науки України, Дніпро, 2025. 

У дисертації розроблено розрахунковий апарат та встановлено закономірності 

явища локалізації пластичної деформації одно- та двовимірних конструкційних 

елементів з майданчиком плинності, теоретичне обґрунтовано виникнення та 

розвиток ліній Людерса. 

Запропоновано модель одновимірної пластичної деформації для матеріалу з 

майданчиком плинності. В рамках цієї моделі розглянуто задачу про рух пластичної 

хвилі. З використанням відомих з публікацій експериментальних даних отримано 

фізичні параметри матеріалу, які при підстановці у сформульовані співвідношення 

дозволяють пов'язати швидкість повільної пластичної хвилі із розміром зерна та 

фізичними розмірами конструкційних елементів. 

Встановлено, що швидкість руху розриву уздовж смуги ковзання менша за 

пружну швидкість. У результаті розв'язання задачі Йоффе отримано співвідношення 

між швидкістю руху розриву уздовж фронту хвилі та відношенням розміру зерна до 

розміру лінії розриву, що дозволило отримати швидкість руху розриву для 

матеріалу. З використанням запропонованої моделі розв'язано задачі розвитку 

повільних хвиль при одноосьовому розтягуванні смуги, чистому згині тощо. 

Ключові слова: майданчик плинності, одно- та двовимірні конструкційні 

елементи, знакозмінні навантаження, смуги Людерса, задача Йоффе. 
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The research is devoted to the development of mathematical methods and numerical 

models of materials with yield plateau. Correct description of physical processes occurring 

in them allows determining the limits of mechanical usage and evaluation of structural 

stability in the scenarios where such materials are used in practice. 

Materials that exhibit yield plateau behavior are known for more than a century and 

since the 1960 with continued experimental research such materials, for example shape 

memory alloys, received a number of practical applications from satellite construction to 

medicine to detectors. Since 1990s there is an emerging interest towards this type of 

materials in construction since some of their specific properties like an increased plasticity 

limit, two possible equilibrium phases, and larger ability to withstand periodic loads, 

oscillations and vibrations. Current practical applications make use of this properties in 

scenarios related to reconstruction, repurposing and risk assessment related to fracture. 

This class of materials started to find applications in structural engineering and 

construction since the 1990s. While those compounds are significantly less suitable for 

their usage as primary materials, there are particular properties such as increased softening 

limits, anti-corrosion abilities, lighter density, stability under vibrations and mush larger 

ultimate plastic stress. As a result it is possible to use them in reconstruction and 

construction risk assessment. 

Real applications of materials with extensive yielding plateau include, in particular, 

applications in structural mechanics, machinery, metallurgy and material research. As an 

example, there are applications as an enhancement of seismic properties of buildings and 

structures by embedding yielding materials to existing hardened base. While main 

hardened structure is designed to withstand primary earthquakes, yielded wireframe allows 

to overcome aftershocks – waves of lesser energy and amplitude, but still continuing 

making damage. 

It has been experimentally established that when applying tension to a flat strip made 

of soft steel on its polished surface there are unobtrusively visible lines forming at a certain 

angle to the stretching direction. These lines, known to engineers under the name Lüders 

bands, appear at the moment of falling loads at the yielding limit and extend along the 

length of the specimen. Observation over the appearance and distribution of these lines on 

the surface of steel samples gives valuable information about the nature of phenomena 

occurring in the structure of the material at the time plastic deformation starts. 

Generalized variant of plastic flow theory with combined hardening was proposed 

for description of a material with yielding plateau on its stress-strain diagram during soft 

loading and tooth-peak during hard loading. Theory is built on the assumption that rapid 

drop of stresses after tooth-peak is caused by strain-softening connected with the release of 

dislocations. Cases of cyclic loading with tension-compression cycles was considered with 

the main accent of the plastic deformation that is connected to propagation of Lüders bands 

and slow plasticity wave that divides a specimen into plastic domain with Lüders stresses 

and elastic domain. 

The case of alternating load is analyzed, in which the material is loaded periodically 

with a force of alternating sign. The solution of the problem of accumulation of plastic 

deformation shows total amount of cycles required to reach the limit when fracture occurs. 

It was determined that plastic deformation during cyclic loading occurs at lesser stresses 

than the state of plasticity on the yielding plateau. Using the proposed model problems of 
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development of slow plasticity waves during a strip tension, pure bending, etc. were 

considered. 

Solution of a problem of slip lines development during complex shear is proposed. 

Employing known description of crystalline lattice processes during plastic slip the 

analytical model describes plastic localization during emergence of discrete structures in 

the material on macro-scale due to loss of homogeneity along one of the axes. Conditions 

of development of shear bends through time are investigated and mathematically 

described. During continuous accumulation of deformations on the yield plateau the shear 

process between crystallic layers on the grain scale is connected to split of the material into 

two phases with specific arrangement that can be observed visually (Lüders bands). The 

solution was found by introduction of special functions into stationary problem equations 

that bring time parameter into consideration. Proposed approach may be applied to a 

variety of problems of slip line development under an influence of arbitrary loading. 

In addition to the emergence of different crystallic form, he material is shown to split 

into a global state characterized by yielding plateau on the stress-strain diagram, and the 

localized state of strain-softening with a distinct boundary between the two that continue to 

develop and move through the material as plastic deformation continues. Uniaxial model of 

plastic deformation for a material with yielding plateau is considered. A problem of 

propagation of a slow plasticity wave was considered using this model. Using empirical 

data for a material the relations that connect velocity of a slow plastic wave with a grain 

size of the material was built. It was found out that a velocity of discontinuity along a slip 

line is slower than elastic velocity of a material. As a result of a solution of Yoffe problem, 

relations between discontinuity line velocity along the band, grain size and size of the slip 

band were found out, that helped to obtain a velocity of slip line propagation velocity for a 

material.  

Piece-wise model of stress-strain diagram with strain-softening is constructed and 

analyzed in the state of plasticity showing the emergence of plastic localization in the form 

of slip bands and total amount of plastic deformation before fracture is determined. A 

numerical model is proposed covering the constructed theoretical model and the two 

scenarios that can be reduced to 2D problems are analyzed using the finite element 

method: pure bending and circular pipe with internal pressure. 2D finite element method 

with increasing size of elements shows convergence with the analytical model. Several 

published experimental works covering practically used materials are analyzed to 

determine physical parameters required for the analytical model. The solution of the 

problem of propagation of plastic deformation using the obtained parameters is shown to 

match the published empirical results. 

Key words: yielding plane, uni- and two-dimensional construction elements, 

alternating loading, Lüders bands, Yoffe problem. 

 

 

 

 

 

 

 


